Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis. The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention. Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat3909DOI Listing

Publication Analysis

Top Keywords

density states
8
bulk bismuth
8
fermi level
8
thermodynamic evidence
4
evidence valley-dependent
4
valley-dependent density
4
states bulk
4
bismuth electron-like
4
electron-like carriers
4
carriers bismuth
4

Similar Publications

Background: Microbiota of the distal part of the intestine produces Urolithin A (Uro A) as a derivative of ellagitannins hydrolysis. Recently, the mitophagy, anti-inflammatory, and antioxidant properties of Uro A have focused more attention on its probable beneficial effects on neurodegenerative states. The purpose of this research was to study the impact of Uro A on the histopathology of the cerebellum in a rat model of streptozotocin-induced Alzheimer's disease.

View Article and Find Full Text PDF

Background: The increased incidence of Alzheimer's disease (AD) rate represent an unmet medical need and thus critical for the development of novel molecular therapeutics. Recent work focusing on patients with apoE4 alleles has highlighted the association of brain cholesterol dysregulation with elevated pathological burden and neurodegeneration. These studies have highlighted the importance of the nuclear receptor Liver X receptor (LXR) for developing AD therapies.

View Article and Find Full Text PDF

Background: Frontotemporal degeneration (FTD) is an umbrella term encompassing a range of rare neurodegenerative disorders that cause progressive changes to behavior, personality, language, and movement with onset typically before age 60. Currently, several potential FTD therapies are under investigation, underscoring the need for increased diversity in research participation. Two validated scores describe socioeconomic and geographic factors that may impact willingness to participate in research.

View Article and Find Full Text PDF

Technology and Dementia Preconference.

Alzheimers Dement

December 2024

Department of Bionano Technology, Gachon University, Seongnam, Korea, Republic of (South).

Background: Electroencephalography (EEG) is a non-intrusive technique that provides comprehensive insights into the electrical activities of the brain's cerebral cortex. The brain signals obtained from EEGs can be used as a neuropsychological biomarker to detect different stages of Alzheimer's disease (AD) through quantitative EEG (qEEG) analysis. This paper investigates the difference in the abnormalities of resting state EEG (rEEG) signals between eyes-open (EOR) and eyes-closed (ECR) in AD by analyzing 19- scalp electrode EEG signals and making a comparison with healthy controls (HC).

View Article and Find Full Text PDF

Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!