Podophyllum hexandrum Royle known as Indian mayapple is an important medicinal plant found only in higher altitudes (2,700 to 4,200 m) of the Himalayas. The highly valued anticancer drug Podophyllotoxin is obtained from the roots of this plant. Due to over exploitation, this endemic plant species is on the verge of extinction. In vitro culture for efficient regeneration and the production of podophyllotoxin is an important research priority for this plant. Hence, in the present study, an efficient plant regeneration system for mass multiplication through somatic embryogenesis was developed. We have screened P. hexandrum seeds collected from three different regions in the Himalayas to find their regenerative potentials. These variants showed variation in germination percentage as well as somatic embryogenic frequency. The seeds collected from the Milam area of Pithoragarh district showed better germination response (99.3%) on Murashige and Skoog (MS) medium fortified with Gibberellic acid (GA3 [5 mg/l]) and higher direct somatic embryogenic frequency (89.6%). Maximum production of embryogenic callus (1.2 g fresh weight [FW]) was obtained when cotyledons containing the direct somatic embryo clusters were cultured in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D [1.5 mg/l]) after 4 week of culture in complete darkness. In the present investigation, somatic embryogenesis was accomplished either by direct organogenesis or callus mediated pathways. The latter method resulted in a higher frequency of somatic embryo induction in hormone-free MS medium yielding 47.7 embryos/50 mg of embryogenic callus and subsequent germination in MS medium supplemented with GA3 (5 mg/l). Seventy-nine percent of embryos attained complete maturity and germinated into normal plants with well-developed roots. Systematic histological analysis revealed the origin of somatic embryo and their ontogenesis. The higher level of podophyllotoxin (1.8 mg/g dry weight [DW]) was recorded in germinated somatic embryos when compared to field grown plants. The present system can be widely used for mass propagation, transgenic recovery, and podophyllotoxin production for commercial utilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-014-0632-1 | DOI Listing |
PLoS Genet
January 2025
Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel.
Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.
Plants (Basel)
December 2024
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Roses are one of the most important flowers applied to landscape, cut flowers, fragrance and food industries widely. As an effective method for plant reproduction, the regeneration via somatic embryos is the most promising method for breed improvement and genetic transformation of woody plants. However, lower somatic embryogenesis (SE) induction rates and genotypic constraints impede progress in genetic transformation in rose.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
The increasing emphasis on animal welfare and ethics, as well as the considerable time and cost involved with animal testing, have prompted the replacement of many aspects of animal testing with alternative methods. In the area of developmental toxicity, the embryonic stem cell test (EST) has played a significant role. The EST evaluates toxicity using mouse embryonic stem cells and somatic cells and observes the changes in heartbeat after cardiac differentiation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia.
Rafn. is a medicinal plant used as a model for studying plant developmental processes due to its developmental plasticity and ease of manipulation in vitro. Identifying the genes involved in its organogenesis and somatic embryogenesis (SE) is the first step toward unraveling the molecular mechanisms underlying its morphogenic plasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!