Neurocardiogenic syncope is the most frequent cause of fainting in childhood and adolescence. Although head-up tilt table testing (HUTT) was previously considered as the reference standard in the diagnosis of syncope, in children with a typical history of reflex syncope, normal physical examination, and electrocardiogram (ECG) are sufficient to cease investigation; however, according to recent reports, TT is indicated in patients in whom this diagnosis cannot be proven by initial evaluation. The hypothesis of this study is that P-wave dispersion (PWD) can be a useful electrocardiographic predictor of cardiac autonomic dysfunction in children with vasovagal syncope (VVS). The study was designed prospectively and included 50 children with positive and 50 children with negative HUTT who presented with at least two previous unexplained episodes of syncope as well as 50 sex- and age-matched healthy children as the control group. All standard 12-lead ECGs were obtained in patients and controls, and the difference between maximum and minimum durations of the P wave was defined as the PWD. A total of 100 children with VVS and 50 healthy controls were evaluated for the study. The P maximum values of HUTT-positive (HUTT[+]) patients were significantly greater than those in the HUTT-negative (HUTT[-]) and control groups(p < 0.05). In addition, mean PWD values were 50.2 ± 18.5, 39.6 ± 11.2 and 32.0 ± 11.2 ms in the HUTT(+), HUTT(-), and control groups, respectively. The difference between groups was statistically significant (p < 0.05). We suggest that PWD is an early sign of cardiac autonomic dysfunction in children with neurally mediated syncope and can be used as a noninvasive electrocardiographic test to evaluate orthostatic intolerance syndromes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00246-013-0825-yDOI Listing

Publication Analysis

Top Keywords

cardiac autonomic
12
autonomic dysfunction
12
dysfunction children
12
p-wave dispersion
8
children
8
neurocardiogenic syncope
8
syncope
7
dispersion indicator
4
indicator cardiac
4
children neurocardiogenic
4

Similar Publications

Purpose: This study aimed to evaluate the acute effects of beetroot extract and resveratrol supplementation (isolated and combined) on cardiac autonomic modulation and cardiovascular parameters recovery after exercise in individuals with coronary artery disease (CAD).

Methods: 14 males with CAD were submitted to 4 protocols consisting of 30 min (min) of rest, 30 min of aerobic exercise on a treadmill (60% of the heart rate reserve HRR), followed by 30 min of recovery. Before each protocol, the subjects consumed 500 mg of starch (placebo protocol), 500 mg of beetroot (beetroot protocol), or 500 mg of resveratrol (resveratrol protocol), or 500 mg of beetroot and 500 mg of resveratrol (combined protocol).

View Article and Find Full Text PDF

Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy.

Metabolites

January 2025

Diabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, Spain.

This study aimed to evaluate whether glycoprotein and lipoprotein lipidomics profiles could enhance a clinical predictive model for carotid subclinical atherosclerosis in patients with type 1 diabetes (T1D). Additionally, we assessed the influence of cardiac autonomic neuropathy (CAN) on these predictive models. We conducted a cross-sectional study including 256 patients with T1D.

View Article and Find Full Text PDF

Examining Insula-Default Mode Network Functional Connectivity and Its Relationship with Heart Rate Variability.

Brain Sci

January 2025

Psychological Neuroscience Laboratory, Psychology Research Centre (CIPsi), School of Psychology, University of Minho, 4710-057 Braga, Portugal.

Background: The Default Mode Network (DMN) is involved in self-referential and emotional processes, while the insula integrates emotional and interoceptive signals. Functional connectivity between the insula and the DMN is proposed to enhance these processes by linking internal bodily states with self-referential thoughts and emotional regulation. Heart Rate Variability (HRV), a measure of parasympathetic regulation of cardiac activity, has been associated with the capacity to regulate autonomic arousal.

View Article and Find Full Text PDF

The Role of AMPS in Parkinson's Disease Management: Scoping Review and Meta-Analysis.

Bioengineering (Basel)

December 2024

Pediatric Physical Medicine and Rehabilitation Unit, IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy.

Automated Mechanical Peripheral Stimulation (AMPS) is emerging as a potential therapeutic tool for managing motor and non-motor symptoms in individuals with Parkinson's disease (PD), particularly in terms of improving gait, balance, and autonomic regulation. This scoping review aims to synthesize current evidence on AMPS's effectiveness for these outcomes. A review was conducted on MEDLINE, Cochrane Central, Scopus, PEDro, and Web of Science.

View Article and Find Full Text PDF

Background: Autonomic dysfunction plays an essential role in dementia, however, it is not known whether electrocardiogram autonomic dysfunction-related indicators are associated with the severity of dementia. In this study, we attempted to investigate whether these indicators are correlated in patients with vascular dementia and Alzheimer's disease compared with normal health individuals. For this purpose, we measured and analyzed the predictive value of heart rate deceleration capacity (DC), heart rate deceleration runs (DRs), heart rate acceleration capacity (AC) along with the plasma levels of lipoprotein-associated phospholipase A2 (Lp-PLA2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!