Synchronization occurs widely in natural and technological world, but it has not been widely used to extend the life time of the desirable behavior of the coupled systems. Here we consider the globally coupled system consisting of n units and show that the initial synchronous state extends the lifetime of desired behavior of the coupled system in the case when the excitation of one or few units is suddenly (breakdown of energy supply) or gradually (as the effect of aging and fatigue) switched off. We give evidence that for the properly chosen coupling the energy transfer from the excited units allows unexcited units to operate in the desired manner. As proof of concept, we examine the system of coupled externally excited rotating pendula. After the partial excitation switch off the initial complete synchronization of all pendula is replaced by phase synchronization with a constant phase shift between the clusters of excited and unexcited pendula. Our results show that the described extension of the system's life time occurs for the wide range of coupling parameters and is robust to the external perturbations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955919 | PMC |
http://dx.doi.org/10.1038/srep04391 | DOI Listing |
J Med Internet Res
January 2025
International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
Background: Few studies have explored the relationship between macronutrient intake and sleep outcomes using daily data from mobile apps.
Objective: This cross-sectional study aimed to examine the associations between macronutrients, dietary components, and sleep parameters, considering their interdependencies.
Methods: We analyzed data from 4825 users of the Pokémon Sleep and Asken smartphone apps, each used for at least 7 days to record objective sleep parameters and dietary components, respectively.
Neurology
February 2025
Department of Neurology and Center of Clinical Neuroscience, First Medical Faculty, General University Hospital and Charles University, Prague, Czech Republic.
Background And Objectives: Patients with multiple sclerosis (MS) may demonstrate better disease control when treatment is initiated on high-efficacy disease-modifying therapies (DMTs) from onset. This subgroup analysis assessed the long-term efficacy and safety profile of the high-efficacy DMT ocrelizumab (OCR) as first-line therapy for early-stage relapsing MS (RMS).
Methods: Post hoc exploratory analyses of efficacy and safety were performed in a subgroup of treatment-naive patients with RMS who received ≥1 dose of OCR in the multicenter OPERA I/II (NCT01247324/NCT01412333) studies.
PLoS One
January 2025
Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung, Taiwan.
Background/purpose: Dyslipidemia, a hallmark of metabolic syndrome (MetS), contributes to atherosclerotic and cardiometabolic disorders. Due to days-long analysis, current clinical procedures for cardiotoxic blood lipid monitoring are unmet. This study used AI-assisted attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to identify MetS and precisely quantify multiple blood lipid levels with a blood sample of 0.
View Article and Find Full Text PDFPLoS One
January 2025
Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina.
Chronic kidney disease (CKD) is one of the leading health problems in the world. It is silent in the early stages and gradually progresses, inducing renal physiological and structural alterations. Moreover, CKD is associated with impaired life quality, increased risk for cardiovascular diseases, and reduced life expectancy.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!