Germline and somatic biallelic mutations of the Tuberous sclerosis complex (TSC) 1 and TSC2 gene products cause TSC, an autosomal dominant multifocal hamartomatosis with variable neurological manifestations. The consequences of TSC1 or TSC2 loss in cells of hematopoietic origin have recently started to be unveiled in mice and showed to hinder the development of proper T cell immunity. To date, the consequences of germline TSC1 mutations and/or its loss in mature human T cells remain to be determined. To address these issues, we analyzed subset representation, phenotype and responsiveness to mitogens in T cells from patients with inherited monoallelic TSC1 mutations, and induced shRNA-mediated TSC1 down-regulation in primary and transformed human T cells. We report that, the distribution of peripheral CD4 and CD8 T cell subsets, their cytokine-secretion profile, and responsiveness to in vitro stimulation were largely preserved in TSC subjects with monoallelic TSC1 germline mutations when compared to healthy controls. Sufficient levels of hamartin and tuberin and proper control of mTOR-dependent signaling in primary T cells from TSC subjects best explained this. In contrast, shRNA-induced down-regulation of TSC1, likely mimicking biallelic inactivation of TSC1, compromised hamartin and tuberin expression and mTORC2/AKT/FoxO1/3 signaling causing both primary and transformed T cells to die by apoptosis. Thus, our results indicate that, while one functional TSC1 allele preserves human T lymphocytes development and homeostasis, TSC1 acute down-regulation is detrimental to the survival of both primary and transformed T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954840 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091952 | PLOS |
J Neurodev Disord
January 2025
Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Brookline, MA, USA.
Background: Tuberous Sclerosis Complex (TSC) is a rare genetic condition caused by mutation to TSC1 or TSC2 genes, with a population prevalence of 1/7000 births. TSC manifests behaviorally with features of autism, epilepsy, and intellectual disability. Resting state electroencephalography (EEG) offers a window into neural oscillatory activity and may serve as an intermediate biomarker between gene expression and behavioral manifestations.
View Article and Find Full Text PDFNeuropediatrics
January 2025
Neonatology, Leiden University, Leiden, Netherlands.
Background Hemimegalencephaly (HME) is a rare congenital disorder that is initiated during embryonic development with abnormal growth of one hemisphere. Tuberous sclerosis complex (TSC), a genetic disorder, is rarely associated with HME. Methods We present a case of a newborn with HME with a confirmed mutation in the TSC-1 gene and describe the clinical course, findings on (amplitude integrated) electroencephalography (aEEG), cranial ultrasound (CUS), MRI, and the postmortem evaluation.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Department of Obstetrics and Gynecology, Bokoi Tenshi Hospital, N12E3, Higashi-Ku, Sapporo, Hokkaido, 060-0012, Japan.
Fetal cardiac tumors are often the first clinical manifestation of tuberous sclerosis (TS) when fetal ultrasound screening is performed. TS is an autosomal dominant disorder caused by the mutations in or genes. Here we report a case of a patient with a fetal and neonatal cardiac tumor who underwent a genetic analysis for TS after birth.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
The TSC complex formed by TSC1 and TSC2 is the most important upstream negative regulator of mTORC1. Genetic variations in either TSC1 or TSC2 cause tuberous sclerosis complex (TSC) disease which is a rare autosomal dominant disorder resulting in impairment of multiple organ systems. In this study, besides a reported variation, c.
View Article and Find Full Text PDFPathol Res Pract
January 2025
Department of Orthopaedics, the second Affiliated Hospital of Wannan Medical College, Wuhu 241000, China. Electronic address:
Background: Renal hemangioblastoma (HB) is a rare extra-central nervous system (CNS) tumor, typically not linked to Von Hippel-Lindau (VHL) Syndrome, and its underlying genetic drivers and molecular mechanisms remain elusive. The objective of this study is to investigate the clinicopathological features and molecular genetic changes of primary renal hemangioblastomas.
Methods: Herein, the clinical, imaging, clinicopathological features, and immunophenotype in 3 cases of renal HB were retrospectively analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!