Assessing the evidence: live attenuated influenza vaccine in children younger than 2 years. A systematic review.

Pediatr Infect Dis J

From the *Knowledge and Evaluation Research Unit, Mayo Clinic, Rochester, MN; †Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine/Detroit Medical Center, Detroit, MI; ‡Unidad de Conocimiento y Evidencia, Universidad Peruana Cayetano Heredia, Lima, Peru; §Department of Internal Medicine, Henry Ford Hospital, Detroit, MI; and ¶Division of Preventive, Occupational and Aerospace Medicine, Mayo Clinic, MN.

Published: April 2014

Background: Live attenuated influenza vaccine (LAIV) is effective in children but contraindicated in children <2 years of age.

Methods: We searched Medline, EMBASE, the Cochrane Library, Web of Science, Scopus, PsycInfo and CINAHL through February 2013 for existing systematic reviews, randomized controlled trials (RCTs) and observational studies (for safety). We included studies enrolling healthy children <2 years of age who received LAIV, compared with placebo or inactivated influenza vaccine (IIV). Data were extracted independently by 2 investigators. The relative risk (RR) was pooled across studies using the random effects model.

Results: We found 7 eligible randomized controlled trials and 2 observational studies. Randomized controlled trials included 6281 children and were at low to moderate risk of bias. LAIV reduced the incidence of influenza compared with placebo (relative risk = 0.36, 95% confidence interval: 0.23-0.58, P < 0.05) with a number needed to vaccinate of 17. LAIV increased the incidence of minor side effects (fever and rhinorrhea). LAIV had a similar effect in preventing influenza (relative risk = 0.76, 95% confidence interval: 0.45-1.30, P > 0.05) compared with inactivated influenza vaccine. There was an increase of hospitalization rate (post hoc analysis) and medical attended wheezing with LAIV.

Conclusions: LAIV is highly effective in children <2 years of age compared with placebo and is as effective to inactivated influenza vaccine. The safety profile of LAIV is reasonable although evidence is sparse. LAIV may be considered as an option in this age group particularly during seasons with vaccine shortage.

Download full-text PDF

Source
http://dx.doi.org/10.1097/INF.0000000000000200DOI Listing

Publication Analysis

Top Keywords

live attenuated
8
attenuated influenza
8
influenza vaccine
8
assessing evidence
4
evidence live
4
vaccine children
4
children younger
4
younger years
4
years systematic
4
systematic review
4

Similar Publications

Proteolysis-targeting influenza vaccine strains induce broad-spectrum immunity and in vivo protection.

Nat Microbiol

January 2025

State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.

View Article and Find Full Text PDF

PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins.

Nat Chem Biol

January 2025

State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.

View Article and Find Full Text PDF

Lumpy skin disease (LSD) in cattle is managed through live-attenuated vaccines. Bangladesh LSD vaccine was developed from LSD virus isolate Bangladesh LSD-29 by passaging 60 times in cell culture. Here, we report the complete genome sequence of Bangladesh LSD vaccine strain.

View Article and Find Full Text PDF

The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.

View Article and Find Full Text PDF

The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!