Antibody-type agents (i.e., antibodies and derivatives thereof) may be produced as clinically valuable antidotes, which conceivably could be developed in tandem with prospective new pharmaceutical products so as to render the risks of clinical trials more acceptable from a regulatory standpoint. Yet, this is but a relatively narrow view of the full potential utility associated with antibody-type agents, the significance of which is appreciated upon reconsidering key aspects of early modern biomedical research (notably major contributions thereto by Nobel Laureate Paul Ehrlich) in light of much more recent advances (e.g., application of immunity-oriented approaches to diseases in general, epitope-specific targeting, abzyme-mediated catalysis, antibody-mediated sustained-release buffering of unbound-ligand concentrations, and enhanced thermal and metabolic stability of deuterated chemical species via the kinetic isotope effect), as conditioned by health-related concerns (e.g., current and anticipated epidemiologic transitions vis-a-vis environmental changes) especially with regard to sustainable development (e.g., emphasizing more efficient resource utilization toward increased global resilience based on greater independence from high-maintenance technological infrastructure). The broader view that thus emerges highlights the urgent need to rebalance the health-research agenda, which presently reflect an overemphasis on small-molecule candidate-drug discovery, in order to advance health based on a comprehensive fundamental synthesis of immunity and pharmacology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185958 | PMC |
http://dx.doi.org/10.4161/hv.28192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!