The [PSI(+)] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI(+)], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI(+)]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI(+)] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI(+)] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060481PMC
http://dx.doi.org/10.1128/EC.00300-13DOI Listing

Publication Analysis

Top Keywords

prion seeds
20
hsp104 overexpression
12
dissolution prion
12
mother daughter
12
daughter cells
12
overexpression cures
8
[psi+] yeast
8
yeast cells
8
cures [psi+]
8
asymmetric segregation
8

Similar Publications

Deciphering the Seed Size-Dependent Cellular Internalization Mechanism for α-Synuclein Fibrils.

Biochemistry

January 2025

Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds.

View Article and Find Full Text PDF

A hallmark event in neurodegenerative diseases is represented by the misfolding, aggregation and accumulation of proteins, leading to cellular and network dysfunction preceding the development of clinical symptoms by years. Early diagnosis represents a crucial issue in the field of neuroscience as it offers the potential to utilize this therapeutic window in the future to manage disease-modifying therapy. Seed amplification assays, including Real-Time Quaking-Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA), have emerged in recent years as innovative techniques developed to detect minute amounts of amyloidogenic proteins.

View Article and Find Full Text PDF

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.

View Article and Find Full Text PDF

Evidence from neuropathological cohorts indicates that a CSF α-synuclein (α-syn) seed amplification assay (SAA) may provide quantitative kinetic parameters correlating with α-syn pathology burden in patients with Lewy body disease (LBD). Studies are needed to assess their longitudinal trend during the pre-symptomatic and clinical disease phases and their correlation with measures of disease progression. We aimed to assess the baseline α-syn CSF SAA kinetic parameters, their longitudinal variations and associations with clinical outcomes in a cohort of longitudinally repeatedly sampled Lewy Body disease patients, including clinically unimpaired (asymptomatic LBD) and neurologically impaired individuals.

View Article and Find Full Text PDF

Chaperone-mediated disaggregation of infectious prions releases particles that seed new prion formation in a strain-specific manner.

J Biol Chem

December 2024

Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.

The mammalian prion protein can form infectious, nonnative, and protease resistant aggregates (PrP), which cause lethal prion diseases like human Creutzfeldt-Jakob disease. PrP seeds the formation of new infectious prions by interacting with and triggering the refolding of the normally soluble mammalian prion protein, PrP, into more PrP. Refolding of misfolded proteins in the cell is carried out by molecular chaperones such as Grp78.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!