Probing the equatorial groove of the hookworm protein and vaccine candidate antigen, Na-ASP-2.

Int J Biochem Cell Biol

Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland, Australia; Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia. Electronic address:

Published: May 2014

Hookworm activation-associated secreted proteins can be structurally classified into at least three different groups. The hallmark feature of Group 1 activation-associated secreted proteins is a prominent equatorial groove, which is inferred to form a ligand binding site. Furthermore, a conserved tandem histidine motif is located in the centre of the groove and believed to provide or support a yet to be determined catalytic activity. Here, we report three-dimensional crystal structures of Na-ASP-2, an L3-secreted activation-associated secreted protein from the human hookworm Necator americanus, which demonstrate transition metal binding ability of the conserved tandem histidine motif. We further identified moderate phosphohydrolase activity of recombinant Na-ASP-2, which relates to the tandem histidine motif. By panning a random 12-mer peptide phage library, we identified a peptide with high similarity to the human calcium-activated potassium channel SK3, and confirm binding of the synthetic peptide to recombinant Na-ASP-2 by differential scanning fluorimetry. Potential binding modes of the peptide to Na-ASP-2 were studied by molecular dynamics simulations which clearly identify a preferred topology of the Na-ASP-2:SK3 peptide complex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2014.03.003DOI Listing

Publication Analysis

Top Keywords

activation-associated secreted
12
tandem histidine
12
histidine motif
12
equatorial groove
8
secreted proteins
8
conserved tandem
8
recombinant na-asp-2
8
na-asp-2
5
peptide
5
probing equatorial
4

Similar Publications

Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.

View Article and Find Full Text PDF

T cell activation is accompanied by extensive changes in epigenome. However, the high-ordered chromatin organization underpinning CD8 T cell activation is not fully known. Here, we show extensive changes in the three-dimensional genome during CD8 T cell activation, associated with changes in gene transcription.

View Article and Find Full Text PDF

Microglia modulate their cell state in response to various stimuli. Changes to cellular lipids often accompany shifts in microglial cell state, but the functional significance of these metabolic changes remains poorly understood. In human induced pluripotent stem cell-derived microglia, we observed that both extrinsic activation (by lipopolysaccharide treatment) and intrinsic triggers (the Alzheimer's disease-associated genotype) result in accumulation of triglyceride-rich lipid droplets.

View Article and Find Full Text PDF

Background: Hip osteoarthritis patients display higher levels of fatty infiltration (FI) in the gluteus minimus (GM) compared to other hip muscles. We investigated specific histological factors such as fiber type composition and collagen deposition, and functional outcomes like muscle strength and activation associated with FI in these patients.

Methods: In twelve men (67 ± 6 y) undergoing total hip replacement (THR), hip and knee muscle strength and activation (electromyography, EMG) were assessed bilaterally.

View Article and Find Full Text PDF

Differential Effector Function of Tissue-Specific Natural Killer Cells against Lung Tumors.

J Innate Immun

December 2024

Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA.

Introduction: Natural killer (NK) cells are innate lymphoid cells capable of directly killing target cells while modulating immune effector responses. Despite their multifunctional capacities, a limited understanding of their plasticity and heterogeneity has impeded progress in developing effective NK cell-based cancer therapies. In this study, we investigated NK cell tissue heterogeneity in relation to their phenotype and effector functions against lung tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!