Villin expression in the visceral endoderm and in the gut anlage during early mouse embryogenesis.

EMBO J

Institut Pasteur, Département de Biologie Moléculaire, Paris, France.

Published: November 1988

Villin is an evolutionarily well conserved, Ca2+ regulated actin-binding protein, and a major structural component of the brush border of specialized absorptive cells. Using paraffin sections and an affinity purified polyclonal anti-villin antibody, we have investigated the early expression of villin during mouse embryogenesis. Villin is first detectable at the early post-implantation stage in visceral endodermal cells at the periphery of the egg cylinder. In this extra embryonic layer, the expression of villin increases and then persists until full term gestation. In the embryo, villin first appears in gut anlage during the axial rotation. Using the same methodology, villin expression is also demonstrated in differentiating embryoid bodies from a teratocarcinoma. Both in extra embryonic and embryonic extracts, villin expression is confirmed by immunoblot and Northern blot analysis which reveal, respectively, a single polypeptide of 93 kd and an mRNA of 3.4 kb in length, two well defined parameters for adult mouse villin gene expression. The results presented here show that paraffin sections allow very sensitive and highly resolutive detection of antigens in early embryogenesis. They provide a detailed developmental profile of villin expression and demonstrate the usefulness of villin as a marker for epithelial cells involved in absorptive processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC454827PMC
http://dx.doi.org/10.1002/j.1460-2075.1988.tb03203.xDOI Listing

Publication Analysis

Top Keywords

villin expression
16
villin
11
gut anlage
8
mouse embryogenesis
8
embryogenesis villin
8
paraffin sections
8
expression villin
8
extra embryonic
8
expression
6
expression visceral
4

Similar Publications

Dietary fermented mixed ingredient product enhances growth performance and intestinal stem cell-mediated epithelial regeneration through Wnt/β-catenin pathway in layer chicks.

Poult Sci

January 2025

College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China. Electronic address:

This study aimed to investigate the effects of dietary supplements of fermented mixed ingredient product (FMIP) on the growth performance, intestinal health, and immune performance of layer hens during the brooding period. Four hundred eighty healthy one-day-old layer chicks were randomly divided into four groups (six replicates/group, twenty hens/replicate) and were fed with different experimental diets for eight weeks (from day 1 to day 56): (1) Corn-soybean-base diet (CON); (2) Chlortetracycline group (CTC; CON diet supplemented with 0.5g/kg chlortetracycline); (3) 4 % fermented mixed ingredient product (4 % FMIP); (4) 8 % fermented mixed ingredient product (8 % FMIP).

View Article and Find Full Text PDF

Background: Impaired intestinal epithelial barrier has been considered to be associated with an increasing variety of gastrointestinal diseases, especially inflammatory bowel disease (IBD) encompassing Crohn's disease (CD) and ulcerative colitis (UC). We aimed to investigate the role of Gasdermin B (GSDMB) in modulating intestinal epithelial barrier integrity and proposed a promising therapeutic strategy.

Methods: GSDMB expression was evaluated in adult CD samples by molecular biology means and single-cell transcriptomes.

View Article and Find Full Text PDF

Background And Aims: Increased intestinal permeability exacerbates the development of metabolic dysfunction associated steatohepatitis (MASH), but the underlying mechanisms remain unclear. Autophagy is important for maintaining normal intestinal permeability. Here, we investigated the impact of intestinal transcription factor EB (TFEB), a key regulator of autophagy, in intestinal permeability and MASH progression.

View Article and Find Full Text PDF

Ubiquitin-specific protease 25 (USP25), a member of the deubiquitination family, plays an important role in protein ubiquitination, degradation, inflammation, and immune regulation. However, the role and mechanism of USP25 in ulcerative colitis (UC) remain unclear. To study the role and mechanism of USP25 in UC, bioinformatics analysis and research are conducted on clinical patients with UC, Usp25 knockout (Usp25) mice, intestinal epithelial cell-specific knockout signal transducer and activator of transcription 3 (Stat3) (Villin-Cre Stat3) mice, and human colonic epithelial cells.

View Article and Find Full Text PDF

: The barrier properties of the human small intestine play a crucial role in regulating digestion, nutrient absorption and drug metabolism. Current in vitro organotypic models consist only of an epithelium, which does not take into account the possible role of stromal cells such as fibroblasts or the extracellular matrix (ECM) which could contribute to epithelial barrier properties. Therefore, the aim of this study was to determine whether these stromal cells or ECM were beneficial or detrimental to barrier function when incorporated into an organotypic human small intestine model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!