Prenatal stress produces anxiety prone female offspring and impaired maternal behaviour in the domestic pig.

Physiol Behav

Animal Behaviour and Welfare, Animal and Veterinary Sciences Research Group, SRUC, West Mains Rd., Edinburgh EH9 3JG, Scotland, United Kingdom. Electronic address:

Published: April 2014

Numerous studies have shown that prenatal stress (PNS) can have profound effects on postnatal well-being. Here, the domestic pig (Sus scrofa) was used to investigate PNS effects owing to the direct relevance for farm animal welfare and the developing status of the pig as a large animal model in translational research. Pregnant primiparous sows were exposed, in mid-gestation, to either a social stressor (mixing with unfamiliar conspecifics) or were kept in stable social groups. The ratio of levels of mRNAs for corticotropin releasing hormone (CRH) receptors 1 and 2 in the amygdala, measured for the first time in the pig, was substantially increased in 10-week-old female, but not male, PNS progeny indicating a neurobiological propensity for anxiety-related behaviour. Mature female offspring were observed at parturition in either a behaviourally restrictive crate or open pen. Such PNS sows showed abnormal maternal behaviour in either environment, following the birth of their first piglet. They spent more time lying ventrally, more time standing and showed a higher frequency of posture changes. They were also more reactive towards their piglets, and spent longer visually attending to their piglets compared to controls. Associated with this abnormal maternal care, piglet mortality was increased in the open pen environment, where protection for piglets is reduced. Overall, these data indicate that PNS females have their brain development shifted towards a pro-anxiety phenotype and that PNS can be causally related to subsequent impaired maternal behaviour in adult female offspring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2014.02.052DOI Listing

Publication Analysis

Top Keywords

female offspring
12
maternal behaviour
12
prenatal stress
8
impaired maternal
8
domestic pig
8
open pen
8
abnormal maternal
8
pns
6
stress produces
4
produces anxiety
4

Similar Publications

Background: Modern dietary trends have led to an increase in foods that are relatively high in n-6 polyunsaturated fatty acids (PUFAs) and low in n-3 PUFAs. We previously reported that the offspring of mother mice that consumed a diet high in n-6 linoleic acid (LA) and low in n-3 α-linolenic acid (ALA), hereinafter called the LA/ALA diet, exhibit behavioral abnormalities related to anxiety and feeding.

Objective: We currently lack a comprehensive overview of the behavioral abnormalities in these offspring, which was investigated in this study.

View Article and Find Full Text PDF

Maternal exposure to polystyrene nanoplastics during gestation and lactation caused fertility decline in female mouse offspring.

Ecotoxicol Environ Saf

January 2025

School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China; Department of Reproductive Medicine, the 1st affiliated hospital, Jiangxi Medical College, Nanchang University; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, China; HuanKui College, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University, Nanchang University, Nanchang 330006, China. Electronic address:

The impact of micro/nano plastics (MPs/NPs) on human health is a significant area of research. Studies on the effects of maternal exposure to microplastics (MPs) on the fertility in offspring have been conducted, but the damage caused by nanoplastics (NPs) remains ambiguous. In this study, pregnant Kunming mice were exposed to 30 mg/kg/day PS-NPs from 0.

View Article and Find Full Text PDF

Importance: Current evidence of the association between prenatal exposure to glucocorticoids and long-term mental disorders is scarce and has limitations.

Objective: To investigate the association between prenatal exposure to systemic glucocorticoids and mental disorders in offspring at the age of 15 years, comparing exposed vs unexposed offspring born to mothers with the same underlying disease (risk of preterm delivery and autoimmune or inflammatory disorders).

Design, Setting, And Participants: This nationwide population-based cohort study used data from registries in Denmark with follow-up until December 31, 2018.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Jackson Laboratory, Bar Harbor, ME, USA.

Background: Cerebral amyloid angiopathy (CAA) co-occurs with neurodegeneration in Alzheimer's disease (AD). CAA is absent in many AD mouse models, rendering CAA difficult to study. Previous work has shown wild-derived WSB/EiJ (WSB) mice over-expressing APP/PS1 had increased CAA, and thus may be useful in investigating CAA-causing mechanisms.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.

Background: There is growing evidence that epigenetic age acceleration may predict late life cognitive decline and dementia, but it is unknown whether this is due to accelerated neurodegeneration or reduction in cognitive resilience. We examined the relationship between epigenetic clocks and domain specific neuropsychological (NP) factor scores, mild cognitive impairment (MCI), Alzheimer's Disease (AD), and all-cause dementia, before and after accounting for plasma total tau (t-tau), a marker of neurodegeneration.

Method: DNA methylation and plasma t-tau (Simoa assay; Quanterix) data from 2091 Framingham Heart Study Offspring cohort participants were generated from blood at the same Exam 8 visit (2005-2008).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!