The mechanisms underlying mitochondrial impairment in the failing heart are not yet clear. In a previous study, we found that the levels of small heat shock proteins (HSP) such as mitochondrial HSPB1 and HSPB8 in the failing heart following myocardial infarction were decreased. In the present study, to verify the hypothesis that mitochondrial dysfunction in the failing heart is associated with alterations in mitochondrial small heat shock proteins, we examined the effects of geranylgeranylacetone, a heat shock protein inducer, on the cardiac mitochondrial function after myocardial infarction. When hemodynamic parameters of rats with myocardial infarction were measured at the 8th (8W) week after coronary artery ligation (CAL), the 8W-CAL showed signs of chronic heart failure concomitant with a reduced mitochondrial oxygen consumption rate. HSPB1 and HSPB8 contents in the mitochondrial fraction prepared from the failing heart were decreased, suggesting that an attenuation of mitochondrial translocation of HSPB1 and HSPB8 had led to an impairment of mitochondrial energy-producing ability. Geranylgeranylacetone treatment from the 2nd to 8th week after myocardial infarction attenuated the reduction in mitochondrial HSPB1 and HSPB8 contents. Furthermore, the mitochondrial energy-producing ability and cardiac pump function were preserved by orally administered geranylgeranylacetone during the development of heart failure. These results suggest that the induction of small heat shock proteins in the infarcted heart by geranylgeranylacetone treatment contributed to the preservation of mitochondrial function, leading to an improvement of cardiac contractile function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2014.02.037 | DOI Listing |
Biochimie
January 2025
Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Russian Federation; Department of Biochemistry and Regenerative Biomedicine Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Russian Federation. Electronic address:
BAG3 is a universal adapter protein involved in various cellular processes, including the regulation of apoptosis, chaperone-assisted selective autophagy, and heat shock protein function. The interaction between small heat shock proteins (sHsps) and their α-crystallin domains (Acds) with full-length BAG3 protein and its IPV domain was analyzed using size-exclusion chromatography, native gel electrophoresis, and chemical cross-linking. HspB7 and the 3D mutant of HspB1 (which mimics phosphorylation) showed no interaction, HspB6 weakly interacted, and HspB8 strongly interacted with full-length BAG3.
View Article and Find Full Text PDFAutophagy
December 2024
Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
HSPB1 [heat shock protein family B (small) member 1] and HSPB8 are essential molecular chaperones for neuronal proteostasis, as they prevent protein aggregation. Mutant HSPB1 and HSPB8 primarily harm peripheral neurons, resulting in axonal Charcot-Marie-Tooth neuropathies (CMT2). Macroautophagy/autophagy is a shared mechanism by which HSPB1 and HSPB8 mutations cause neuronal dysfunction.
View Article and Find Full Text PDFRev Neurol (Paris)
December 2024
Neurosciences Laboratory, University Benyoucef Benkhedda, Algiers, Algeria; Department of Neurology, EHS El Maham, Cherchell,Tipaza, Algeria.
Distal hereditary motor neuropathies (dHMN) are a group of heterogeneous hereditary disorders characterized by a slowly progressive distal pure motor neuropathy. Electrophysiology, with normal motor and sensory conduction velocities, can suggest the diagnosis of dHMN and guide the genetic study. More than thirty genes are currently associated with HMNs, but around 60 to 70% of cases of dHMN remain uncharacterized genetically.
View Article and Find Full Text PDFFront Neurosci
March 2024
Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
Background: Alzheimer's disease (AD) is a common, refractory, progressive neurodegenerative disorder in which cognitive and memory deficits are highly correlated with abnormalities in hippocampal brain regions. There is still a lack of hippocampus-related markers for AD diagnosis and prevention.
Methods: Differently expressed genes were identified in the gene expression profile GSE293789 in the hippocampal brain region.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!