Construction and analyses of elastically coupled multiple-motor systems.

Methods Enzymol

Departments of Chemistry and Bioengineering, Rice University, Houston, Texas, USA. Electronic address:

Published: November 2014

Precision analyses of the collective motor behaviors have become important to dissecting mechanisms underlying the trafficking of subcellular commodities in eukaryotic cells. Here, we describe a synthetic approach to create structurally defined multiple protein complexes containing two elastically coupled motor molecules. Motors are connected using a simple DNA-scaffolding molecule and DNA-conjugated, artificial protein polymers that function as tunable elastic linkers. The procedure to self-assemble these components produces complexes in high synthetic yield and allows individual multiple-motor systems to be interrogated at the single-complex level. Methods to evaluate cooperative motor responses in a static optical trap are also discussed. While enabling the average transport properties of single/noninteracting and coupled motors to be compared, these procedures can provide insight into the extent to which motors cooperate productively via load sharing as well as the roles loading-rate-dependent phenomena play in collective motor functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-397924-7.00011-XDOI Listing

Publication Analysis

Top Keywords

elastically coupled
8
multiple-motor systems
8
collective motor
8
construction analyses
4
analyses elastically
4
coupled multiple-motor
4
systems precision
4
precision analyses
4
analyses collective
4
motor
4

Similar Publications

For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics.

View Article and Find Full Text PDF

Purpose: To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.

Methods: Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation.

View Article and Find Full Text PDF

The present work investigates the interfacial and atomic layer-dependent mechanical properties, SOC-entailing phonon band structure, and comprehensive electron-topological-elastic integration of ZrTe and NiTe. The anisotropy of Young's modulus, Poisson's ratio, and shear modulus are analyzed using density functional theory with the TB-mBJ approximation. NiTe has higher mechanical property values and greater anisotropy than ZrTe.

View Article and Find Full Text PDF

Exploiting novel crosslinking chemistry, this study pioneers the use of waterborne polyurethane (WPU) to chemically crosslink porcine-derived gelatin, producing enhanced gelatin hydrogel films through a solvent-casting method. Our innovative approach harnesses the reactive isocyanate groups of WPU, coupling them effectively with gelatin's hydroxyl and primary amino groups to form robust urea and urethane linkages within the hydrogel matrix. This method not only preserves the intrinsic elasticity of polyurethane but also significantly augments the films' tensile strength and strain.

View Article and Find Full Text PDF

Terahertz (THz) waves reside in the electromagnetic spectrum between the microwave and infrared bands. In recent decades, THz technology has demonstrated its potential for biomedical applications. With the highly unique characteristics of THz waves, such as the high sensitivity to water and optimal spatial resolution coupled with the characteristics of the human cornea, such as its high water content, THz technology has been explored as a potential modality to assess corneas and corneal diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!