Dysregulation of pyramidal cell network function by the soma- and axon-targeting inhibitory neurons that contain the calcium-binding protein parvalbumin (PV) represents a core pathophysiological feature of schizophrenia. In order to gain insight into the molecular basis of their functional impairment, we used laser capture microdissection (LCM) to isolate PV-immunolabeled neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem schizophrenia and normal control brains. We then extracted ribonucleic acid (RNA) from these neurons and determined their messenger RNA (mRNA) expression profile using the Affymetrix platform of microarray technology. Seven hundred thirty-nine mRNA transcripts were found to be differentially expressed in PV neurons in subjects with schizophrenia, including genes associated with WNT (wingless-type), NOTCH, and PGE2 (prostaglandin E2) signaling, in addition to genes that regulate cell cycle and apoptosis. Of these 739 genes, only 89 (12%) were also differentially expressed in pyramidal neurons, as described in the accompanying paper, suggesting that the molecular pathophysiology of schizophrenia appears to be predominantly neuronal type specific. In addition, we identified 15 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of the predicted targets of these miRNAs included the signaling pathways found by microarray to be dysregulated in schizophrenia. Taken together, findings of this study provide a neurobiological framework within which hypotheses of the molecular mechanisms that underlie the dysfunction of PV neurons in schizophrenia can be generated and experimentally explored and, as such, may ultimately inform the conceptualization of rational targeted molecular intervention for this debilitating disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633016PMC
http://dx.doi.org/10.3109/01677063.2013.878339DOI Listing

Publication Analysis

Top Keywords

differentially expressed
12
superior temporal
8
schizophrenia
8
neurons
7
molecular
5
molecular profiles
4
profiles parvalbumin-immunoreactive
4
parvalbumin-immunoreactive neurons
4
neurons superior
4
temporal cortex
4

Similar Publications

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a severe neurodegenerative disease, and the most common type of dementia, with symptoms of progressive cognitive dysfunction and behavioral impairment. Studying the pathogenesis of AD and exploring new targets for the prevention and treatment of AD is a very worthwhile challenge. Accumulating evidence has highlighted the effects of fatty acid metabolism on AD.

View Article and Find Full Text PDF

Cinnamomum camphora, a key multifunctional tree species, primarily serves in landscaping. Leaf color is crucial for its ornamental appeal, undergoing a transformation to red that enhances the ornamental value of C. camphora.

View Article and Find Full Text PDF

Genome-wide analysis of alternative splicing differences in hepatic ischemia reperfusion injury.

Sci Rep

December 2024

Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.

Alternative splicing (AS) contributes to transcript and protein diversity, affecting their structure and function. However, the specific transcriptional regulatory mechanisms underlying AS in the context of hepatic ischemia reperfusion (IR) injury in mice have not been extensively characterized. In this study, we investigated differentially alternatively spliced (DAS) genes and differentially expressed transcripts (DETs) in a mouse model of hepatic IR injury using the high throughput RNA sequencing (RNA-seq) analysis and replicate multivariate analysis of transcript splicing (rMATS) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!