Identification of enzyme-bound intermediates via their spectroscopic signatures, which then allows direct monitoring of the kinetic fate of these intermediates, poses a continuing challenge. As an electrophilic covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a number of noncovalent and covalent intermediates along its reaction pathways, and multiple UV-vis and circular dichroism (CD) bands have been identified at Rutgers pertinent to several among them. These electronic transitions fall into two classes: those for which the conjugated system provides a reasonable guide to the observed λmax and others in which there is no corresponding conjugated system and the observed CD bands are best ascribed to charge transfer (CT) transitions. Herein is reported the reaction of four ThDP enzymes with alternate substrates: (a) acetyl pyruvate, its methyl ester, and fluoropyruvate, these providing the shortest side chains attached at the thiazolium C2 atom and leading to CT bands with λmax values of >390 nm, not pertinent to any on-pathway conjugated systems (estimated λmax values of <330 nm), and (b) (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid displaying both a conjugated enamine (430 nm) and a CT transition (480 nm). We suggest that the CT transitions result from an interaction of the π bond on the ThDP C2 side chain as a donor, and the positively charged thiazolium ring as an acceptor, and correspond to covalent ThDP-bound intermediates. Time resolution of these bands allows the rate constants for individual steps to be determined. These CD methods can be applied to the entire ThDP superfamily of enzymes and should find applications with other enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985856 | PMC |
http://dx.doi.org/10.1021/bi4015743 | DOI Listing |
Mikrochim Acta
January 2025
Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China.
For the first time a novel fluorescent La@ZrMOF nanomaterial was synthesized for the convenient and visual detection of ethephon (ETH) based on the ligand-metal charge transfer process. The fluorescence signal gradually enhanced as the concentration of ETH increased, accompanied by a change in the color from colorless to blue. The assay can be completed within 75 min with a detection limit of 0.
View Article and Find Full Text PDFTalanta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:
The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:
Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Max Planck Institute for Microstructure Physics, Halle (Saale), Germany.
Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy MnGe as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy.
The charge transfer (CT) reactions in nucleic acids are crucial for genome damage and repair and nanoelectronics using DNA as a molecular conductor. Previous experimental and theoretical works underlined the significance of nucleic acid structural dynamics on CT kinetics, requiring models that incorporate the dynamics of the nucleic acid, solvents, and counterions. Here, we investigated hole transfer kinetics in poly adenine single and double strands at various temperatures and the rate enhancement due to adenine-to-7-deazaadenine mutation by means of a QM/MM approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!