The four species of the Engraulidae family: European anchovy (Engraulis encrasicolus), Californian anchovy (Engraulis mordax), Peruvian anchoveta (Engraulis ringens), and Japanese anchovy (Engraulis japonicus) studied in this work are very similar morphologically, and it is very difficult to distinguish between them, especially when frozen or processed. We have used the 5S rDNA as a molecular marker to discriminate these four species and used specific primers designed for each species in the nontranscribed spacers (NTS) of these genes. Multiplex PCR was performed with three pairs of primers, and three different sizes were obtained: 597 bp E. encrasicolus, 598 bp E. japonicus, 380 bp E. mordax, and 250 bp E. ringens. For the species E. encrasicolus and E. japonicus, PCR-RFLP was used as an additional technique to distinguish between them because their NTS sequences showed considerable similarity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf405680g | DOI Listing |
Sci Data
January 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China.
The Japanese anchovy (Engraulis japonicus), a finfish with the largest biomass of a single species in the Yellow and East China Seas, plays an important pivotal role in converting zooplanktons into high trophic fish in the food web. As a result, the fish is regard as a key species in its habiting ecosystem. However, the lack of genomic resources hampers our understanding of its genetic diversity and differentiation, as well as the evolutionary dynamics.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA.
Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end-to-end Atlantis ecosystem model to compare and contrast the effects of climate-driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC National Biodiversity Future Center, Palermo, Italy.
Marine litter, particularly microplastics, is a growing threat to the Mediterranean Sea, impacting biodiversity and ecosystem health. However, most studies conducted in the Mediterranean Sea have focused on monitoring of only specific environmental compartments, and rarely have highlighted the overall impacts affecting an area. Therefore, using a new multi-compartment monitoring approach and a standardized methodology, this study investigates the abundance, distribution, composition and impact of marine litter on beaches, surface waters, fish and mussels in a coastal area of Tuscany (Italy).
View Article and Find Full Text PDFItal J Food Saf
November 2024
Unit of Food Hygiene, Department of Veterinary Medicine and Animal Production, University of Naples "Federico II".
Spectrochim Acta A Mol Biomol Spectrosc
March 2025
Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile.
The identification of fish species and their physical and chemical characterization play a crucial role in the fishing industry, fish-food research and the management of marine resources. Traditional methods for species identification, such as expert observation, DNA barcoding and meta-barcoding, though effective, require labor-intensive laboratory work. Consequently, there is a pressing need for more objective and efficient methodologies for accurate fish species identification and characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!