The density fluctuation of water in the supercritical region was investigated theoretically using the reference interaction site model theory combined with the Kovalenko-Hirata closure relation, the so-called RISM-KH theory. The density fluctuation was evaluated by the numerical differentiation of density with respect to pressure at constant temperature. The density fluctuations plotted against density show finite maxima along a line slightly off from the critical isochore, in accordance with experimental results. The microscopic structures of water on both regions that were separated by the line were investigated by analyzing the site-site radial distribution functions. The analysis clearly indicates that the structure is determined by the two effects featuring liquid states: the packing or volume exclusion effect and the screening of the Coulomb interaction or the hydrogen bond, both becoming more important at higher densities. An interplay of the two effects creates maxima of the density fluctuation in the supercritical region of water.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4867974DOI Listing

Publication Analysis

Top Keywords

supercritical region
12
density fluctuation
12
density
6
theoretical characterization
4
characterization "ridge"
4
"ridge" supercritical
4
region fluid
4
fluid phase
4
phase diagram
4
water
4

Similar Publications

Carbon sequestration in deep saline aquifers is a promising strategy for reducing atmospheric CO emissions. However, salt precipitation triggered by the evaporation of formation brine into injected supercritical CO can cause injectivity and containment issues in near-wellbore regions. Predicting the distribution of precipitated salts and their impact on near-wellbore properties remains challenging.

View Article and Find Full Text PDF

This study compares the chemical composition, antioxidant capacity, and antibacterial properties of lavender essential oils extracted using microwave-assisted extraction (MAE) and supercritical CO extraction (SCDE). Gas chromatography-mass spectrometry analysis revealed that the MAE oil contained higher levels of linalyl acetate (36.19%) and linalool (28.

View Article and Find Full Text PDF

We apply the methodology of Lustig, with which rigorous expressions for all thermodynamic properties can be derived in any statistical ensemble, to derive expressions for the calculation of thermodynamic properties in the path integral formulation of the quantum-mechanical isobaric-isothermal (NpT) ensemble. With the derived expressions, thermodynamic properties such as the density, speed of sound, or Joule-Thomson coefficient can be calculated in path integral Monte Carlo simulations, fully incorporating quantum effects without uncontrolled approximations within the well-known isomorphism between the quantum-mechanical partition function and a classical system of ring polymers. The derived expressions are verified by simulations of supercritical helium above the vapor-liquid critical point at selected state points using recent highly accurate ab initio potentials for pairwise and nonadditive three-body interactions.

View Article and Find Full Text PDF

Anti-inflammatory and antioxidant activity of functional lipids extracted through sustainable technologies from Mexican Opuntia ficus-indica seeds.

Food Chem

March 2025

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico. Electronic address:

Opuntia ficus-indica (OFI) seeds are a rich source of functional lipids, yet research on Mexican cultivars remains limited. This study evaluated the antioxidant and anti-inflammatory properties of lipids extracted through subcritical fluid and supercritical fluid extraction with carbon dioxide (SCE-CO₂ and SFE-CO₂) from Mexican OFI Villanueva and Rojo Vigor seeds with and without enzymatic pretreatment. SCE OFI Villanueva oil showed higher extraction efficiency of linoleic (45.

View Article and Find Full Text PDF

Water footprint assessment at the ultra-supercritical (USC) coal power plant in Malaysia.

Environ Monit Assess

November 2024

Department of Engineering, School of Engineering and Technology, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Malaysia.

The power generation sector consumes significant amounts of water. A comprehensive water footprint (WF) assessment helps identify and monitor the processes consuming high amounts of water. This research evaluates the water footprint (WF) of electricity generation at a USC coal power plant, integrating on-site data for enhanced reliability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!