A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well as the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4867270 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea.
Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.
View Article and Find Full Text PDFRep Prog Phys
January 2025
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus, Midtjylland, 8000, DENMARK.
Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.
View Article and Find Full Text PDFNano Lett
January 2025
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Ultrafast near-field optical nanoscopy has emerged as a powerful platform to characterize low-dimensional materials. While analytical and numerical models have been established to account for photoexcited carrier dynamics, quantitative evaluation of the associated pulsed laser heating remains elusive. Here, we decouple the photocarrier density and temperature increase in near-field nanoscopy by integrating the two-temperature model (TTM) with finite-difference time-domain (FDTD) simulations.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!