Effective electron displacements: a tool for time-dependent density functional theory computational spectroscopy.

J Chem Phys

Laboratoire d'Électrochimie, Chimie des Interfaces et Modélisation pour l'Energie, CNRS UMR-7575, Chimie ParisTech, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France.

Published: March 2014

We extend our previous definition of the metric Δr for electronic excitations in the framework of the time-dependent density functional theory [C. A. Guido, P. Cortona, B. Mennucci, and C. Adamo, J. Chem. Theory Comput. 9, 3118 (2013)], by including a measure of the difference of electronic position variances in passing from occupied to virtual orbitals. This new definition, called Γ, permits applications in those situations where the Δr-index is not helpful: transitions in centrosymmetric systems and Rydberg excitations. The Γ-metric is then extended by using the Natural Transition Orbitals, thus providing an intuitive picture of how locally the electron density changes during the electronic transitions. Furthermore, the Γ values give insight about the functional performances in reproducing different type of transitions, and allow one to define a "confidence radius" for GGA and hybrid functionals.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4867007DOI Listing

Publication Analysis

Top Keywords

time-dependent density
8
density functional
8
functional theory
8
effective electron
4
electron displacements
4
displacements tool
4
tool time-dependent
4
theory computational
4
computational spectroscopy
4
spectroscopy extend
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!