The dual reactivity of acyl azides was utilized successfully in C-H activation by the choice of catalyst systems: while selective C-C amidation was achieved under thermal Rh catalysis, a Ru catalyst was found to mediate direct C-N amidation also highly selectively. Investigations of the mechanistic dichotomy between two catalytic systems are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol500602bDOI Listing

Publication Analysis

Top Keywords

reactivity acyl
8
acyl azides
8
c-h activation
8
catalyst systems
8
orthogonal reactivity
4
azides c-h
4
activation dichotomy
4
dichotomy c-c
4
c-c c-n
4
c-n amidations
4

Similar Publications

Visible-Light-Induced [4 + 3]-Annulation of Carbonyl Ylides with Alkenyl Pyrazolinone for Constructing [4.2.1]-Oxo-Bridged Oxocine Skeleton.

Org Lett

January 2025

State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.

Herein, we present a visible-light-induced protocol for the synthesis of highly functionalized oxo-bridged oxocine skeletons. This method generates carbenes via visible-light-induced ortho-acyl diazo compounds, which are rapidly intercepted by the oxygen atom of an intermolecular acyl group to form a cyclic 1,3-dipole. The in situ generated highly reactive 1,3-dipole undergoes a facile formal [4 + 3] cycloaddition with alkenyl pyrazolinone, yielding [4.

View Article and Find Full Text PDF

Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.

View Article and Find Full Text PDF

This study is aimed at investigating the effects of atorvastatin (ATV) on endothelial cell injury in atherosclerosis (AS) through inhibiting acyl-CoA synthetase long-chain family member 4 (ACSL4)-mediated ferroptosis. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish an in vitro model of AS. The cell viability, lactate dehydrogenase (LDH) release, apoptosis, and expression levels of apoptotic proteins were assessed.

View Article and Find Full Text PDF

Diabetic liver injury is a serious complication due to the lack of effective treatments and the unclear pathogenesis. Ferroptosis, a form of cell death involving reactive oxygen species (ROS)-dependent lipid peroxidation (LPO), is closely linked to autophagy and diabetic complications. Therefore, this study is aimed at investigating the role of autophagy in regulating ferroptosis by modulating the degradation of acyl-CoA synthetase long-chain family member 4 (ACSL4) in diabetic hepatocytes and its potential impact on diabetic liver injury.

View Article and Find Full Text PDF

Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism.

Nat Commun

December 2024

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!