Melatonin is an indoleamine that is synthesised from tryptophan under the control of the enzymes arylalkylamine N-acetyltransferase (AA-NAT) and acetylserotonin methyltransferase (ASMT). Melatonin inhibits colon cancer growth in both in vivo and in vitro models; however, a precise mechanism responsible for inhibiting tumour growth has not been clearly described. Endothelin-1 (ET-1) is a peptide that acts as a survival factor in colon cancer, inducing cell proliferation, protecting carcinoma cells from apoptosis and promoting angiogenesis. The data presented show that melatonin inhibits edn-1 mRNA expression (the first step in ET-1 synthesis), ECE-1 protein expression and the release of ET-1 from colorectal cancer cells in vitro. ET-1 levels in cultured media present a similar inhibition pattern to that of edn-1 mRNA expression despite the inhibition of ECE-1 protein after melatonin treatment, which suggests that an endopeptidase other than ECE-1 could be mainly responsible for ET-1 synthesis. The inhibition of edn-1 expression is due to an inactivation of FoxO1 and NF-κβ transcription factors. FoxO1 inactivation is associated with an increased Src phosphorylation, due to elevated cAMP content and PKA activity, whereas NF-κβ inactivation is associated with the blockade of Akt and ERK phosphorylation due to the inhibition of PKC activity after melatonin treatment. Melatonin also inhibits edn-1 promoter activity regulated by FoxO1 and NF-κβ. Finally, a significant correlation was observed between AA-NAT and edn-1 expression downregulation in human colorectal cancer tissues. In conclusion, melatonin may be useful in treating colon carcinoma in which the activation of ET-1 plays a role in tumour growth and progression.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12131DOI Listing

Publication Analysis

Top Keywords

colon cancer
12
melatonin inhibits
12
melatonin
8
cancer cells
8
tumour growth
8
inhibits edn-1
8
edn-1 mrna
8
mrna expression
8
et-1 synthesis
8
ece-1 protein
8

Similar Publications

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Purpose: Patients with stage I colorectal cancer (CRC) rarely experience recurrence after curative resection. Therefore, the risk factors for stage I CRC recurrence are yet to be established. We aimed to identify risk factors for stage I CRC recurrence.

View Article and Find Full Text PDF

Purpose: Determining the extent of radical lymphadenectomy at clinical early stage is challenging. We aimed to investigate the appropriate extent of lymphadenectomy in clinical early-stage right colon cancer.

Methods: Patients with clinical stage 0 or I right colon cancer who underwent curative surgery from January 2007 to December 2021 were included in this retrospective study.

View Article and Find Full Text PDF

Acrometastasis is an extremely rare diagnosis, invariably associated with poor prognosis. A 60-year-old female with complaints of cough and breathing difficulty also presented with pain and swelling in her left leg. Radiological investigations suggested a double primary in the lung and leg; histopathology and immunohistochemistry (IHC) confirmed the lesion in the leg to be metastatic from the lung primary.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is well characterized in terms of genetic mutations and the mechanisms by which they contribute to carcinogenesis. Mutations in APC, TP53, and KRAS are common in CRC, indicating key roles for these genes in tumor development and progression. However, for certain tumors with low frequencies of these mutations that are defined by tumor location and molecular phenotypes, a carcinogenic mechanism dependent on BRAF mutations has been proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!