Maize is the third important major food crop. Breeding for low phytate maize genotypes is an effective strategy for decreasing the content of kernel phytic acid (a chelator of cations such as Ca(2+) and Fe(3+) ) and thereby increasing the bioavailability of nutritive minerals in human diet and animal feed. Previous studies have established that a mutant plant with a lpa2-2 allele accumulates less phytic acid in seeds. Therefore, the marker assisted backcross breeding (MABB), which involves introgression of lpa2-2 recessive allele (which confer low phytate trait) from a lpa2-2 mutant line into a well-adapted line using backcrosses and selection of lines possessing lpa2-2 allele in each backcross population using molecular markers, is an effective strategy for developing low phytate maize. So far, no studies have developed any lpa2-2 allele specific molecular markers for this purpose. Here, using backcross and selfed progenies, obtained by crossing low phytate mutant line 'EC 659418' (i.e. donor of lpa2-2 allele) into agronomically superior line 'UMI395', we have validated that a SSR marker 'umc2230', located 0.4 cM downstream of lpa2-2, cosegregate, in a Mendelian fashion, with low phytic acid trait. Therefore umc2230 can be dependably used in MABB for the development of low phytate maize.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1601-5223.2013.00030.x | DOI Listing |
Plants (Basel)
January 2025
Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans ( L.)-known for their high nutritional quality and low Cd accumulation-in moderately Cd-contaminated soils remain underexplored.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China. Electronic address:
Chitosan microgels (h-CSMs) were prepared by cross-linking hydrophobically modified chitosan with sodium phytate (SP). Emulsions stabilized by h-CSMs with different inter-phase fraction, microgel concentration and cross-linking density were studied of their microstructural and rheological properties. In particular, the large amplitude oscillatory shear (LAOS) of the high internal phase emulsions (HIPEs) stabilized by h-CSMs were systematically analyzed using the Fourier transform with Chebyshev polynomials (FTC) and sequence of physical processes (SPP) methods, to explore their nonlinear rheological properties.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:
This study presents a novel method for encapsulating the bioactive peptide teduglutide to enhance its oral bioavailability using O/W nanoemulsion (NE). Recombinant teduglutide (rTGT), produced in E. coli with 93 % purity, was hydrophobically modified through ion-pairing with phytic acid (PA) and sodium dodecyl sulfate (SDS).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institut für Angewandte Wissenschaft, Ausbau 5, 18258 Rukieten, Germany.
Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.
View Article and Find Full Text PDFAsian J Endosc Surg
January 2025
Department of Obstetrics and Gynecology, Kyushu University Hospital, Fukuoka, Fukuoka, Japan.
Introduction: This study examined factors that affected sentinel lymph node (SLN) identification of patients with endometrial cancer having a preoperative estimation of low recurrent risk.
Methods: This study included 97 patients with endometrial cancer who attempted to identify SLN using a uterine cervical injection of technetium-99 m phytate under laparoscopic or robotic-assisted surgery at our institute. A preoperative single photon emission computed tomography (SPECT) and intraoperative gamma probe were used to detect hot nodes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!