Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Glutathione (GSH) plays a critical role in detoxification reactions by reducing the levels of reactive oxygen species in cancer cells. This study aimed to develop technetium (Tc)-99m diethylenetriaminepentaacetic acid (DTPA)-GSH as a tumor imaging agent, and to evaluate the diagnostic performance of Tc-99m DTPA-GSH in terms of its ability to differentiate tumors from inflammatory lesions.
Methods: DTPA-GSH was synthesized by reaction of GSH with DTPA anhydride under anhydrous conditions in a nitrogen atmosphere. DTPA-GSH was then reacted with Tc-99m sodium pertechnetate in a tin (II) chloride (SnCl2) solution. Gamma camera imaging was performed after intravenous injection of Tc-99m DTPA-GSH into a mouse CT-26 colon cancer model, or a mouse model of inflammation induced by the intramuscular injection of Freund's complete adjuvant.
Results: DTPA-GSH was successfully prepared via a straightforward synthetic procedure and radiolabeled with Tc-99m at a high labeling efficiency (>95%). Tc-99m DTPA-GSH was strongly internalized by tumors in colon cancer model mice, with the tumor-to-normal muscle ratio of the complex reaching 4.3±0.9 at 4 h. By contrast, Tc-99m DTPA-GSH showed relatively weak uptake in inflammatory lesions (target-to-non-target ratio=2.0±0.3 at 4 h). A competition study showed that the uptake of Tc-99m DTPA-GSH into tumors was blocked by co-injection with high concentrations of free GSH.
Conclusions: The results of this work indicate that Tc-99m DTPA-GSH is a good candidate for development as a non-invasive tumor imaging agent. Furthermore, Tc-99m DTPA-GSH effectively distinguished between cancerous tissue and inflammatory lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12149-014-0835-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!