Small molecule-folic acid modification on nanopatterned PDMS and investigation on its surface property.

Biomed Microdevices

Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.

Published: June 2014

AI Article Synopsis

  • Folic acid (FA) is being explored as a cancer therapy due to its overexpression on many tumor cells, making it a target for treatment.
  • This study utilized a combination of nanoimprinting and graft polymerization to modify the surface of polydimethylsiloxane (PDMS) with FA for use in micro-nanofluidic applications.
  • Results showed that FA modification and nanostructuring positively influenced the growth and viability of cervical cancer (HeLa) cells, marking a novel approach to enhance PDMS surface properties for biomedical applications.

Article Abstract

Folic acid (or folate, FA) has attracted considerable attention for cancer therapy. As one small molecule, its receptor (folate receptor, FR) is significantly overexpressed on the surface of many human tumor cells compared with normal cells. In this work, physical and chemical coupled modification method, that is the combination of nanoimprinting technique and graft polymerization, was adopted to modify FA on nanopatterned polydimethylsiloxane (PDMS) surface for possible application in micro-nanofluidic cytology. The surface property of differently treated PDMS was characterized by FTIR, AFM and contact angle measurement. AO/PI double staining, cell counting and MTT method were performed to examine the potential influence of FA modified nanopatterned PDMS on human cervical carcinoma (HeLa) cell behavior. Both FA modification and nanostructure have positive effect on the growth and viability of HeLa cells. It is the first time that the small molecule-folic acid was used to immobilize on the surface of PDMS in order to improve its surface property.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-014-9851-7DOI Listing

Publication Analysis

Top Keywords

surface property
12
small molecule-folic
8
molecule-folic acid
8
nanopatterned pdms
8
surface
6
pdms
5
acid modification
4
modification nanopatterned
4
pdms investigation
4
investigation surface
4

Similar Publications

Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.

Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.

View Article and Find Full Text PDF

Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.

View Article and Find Full Text PDF

Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a "Signal on" Mode.

Chem Biomed Imaging

December 2024

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.

Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process.

View Article and Find Full Text PDF

Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable alternatives for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to increased surface area and oxygen vacancies.

View Article and Find Full Text PDF

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!