A novel β-glucosidase from Humicola insolens with high potential for untreated waste paper conversion to sugars.

Appl Biochem Biotechnol

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-901, SP, Brazil.

Published: May 2014

AI Article Synopsis

  • Humicola insolens developed a new enzyme called β-glucosidase (BglHi2) through solid-state fermentation, which shows a high molecular weight and acts as a homotetramer.
  • The enzyme has optimal activity at a pH of 5.0 and a temperature of 65 °C, demonstrating significant stability and efficiency in hydrolyzing substances such as cellobiose and p-nitrophenyl-β-D-glucopyranoside.
  • BglHi2's ability to effectively break down various types of waste paper, even in the presence of heavy metals, indicates its promising application in cellulosic ethanol production from biodegradable materials.

Article Abstract

Humicola insolens produced a new β-glucosidase (BglHi2) under solid-state fermentation. The purified enzyme showed apparent molecular masses of 116 kDa (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and 404 kDa (gel-filtration), suggesting that it is a homotetramer. Mass spectrometry analysis showed amino acid sequence similarity with a β-glucosidase from Chaetomium thermophilum. Optima of pH and temperature were 5.0 and 65 °C, respectively, and the enzyme was stable for 60 min at 50 °C, maintaining 71 % residual activity after 60 min at 55 °C. BglHi2 hydrolyzed p-nitrophenyl-β-D-glucopyranoside and cellobiose. Cellobiose hydrolysis occurred with high apparent affinity (K M = 0.24 ± 0.01 mmol L(-1)) and catalytic efficiency (k cat/K M = 1,304.92 ± 53.32 L mmol(-1) s(-1)). The activity was insensitive to Fe(+3), Cr(+2), Mn(+2), Co(+2), and Ni(2+), and 50-60 % residual activities were retained in the presence of Pb(2+), Hg(2+), and Cu(2+). Mixtures of pure BglHi2 or H. insolens crude extract (CE) with crude extracts from Trichoderma reesei fully hydrolyzed Whatman no. 1 paper. Mixtures of H. insolens CE with T. reesei CE or Celluclast 1.5 L fully hydrolyzed untreated printed office paper, napkin, and magazine papers after 24-48 h, and untreated cardboard was hydrolyzed by a H. insolens CE/T. reesei CE mixture with 100 % glucose yield. Data revealed the good potential of BglHi2 for the hydrolysis of waste papers, promising feedstocks for cellulosic ethanol production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-014-0847-9DOI Listing

Publication Analysis

Top Keywords

humicola insolens
8
min °c
8
fully hydrolyzed
8
insolens
5
novel β-glucosidase
4
β-glucosidase humicola
4
insolens high
4
high potential
4
potential untreated
4
untreated waste
4

Similar Publications

The β-glucosidase enzyme is a glycosyl hydrolase that breaks down the β-1,4 linkage of cellobiose. It is inhibited by glucose at high concentrations due to competitive inhibition. However, at lower glucose concentrations, the glucose-tolerant β-glucosidase from Humicola insolens (BGHI) undergoes stimulation.

View Article and Find Full Text PDF

Characterization of heat- and alkali-resistant feruloyl esterase from Humicola insolens and application in the production of high-strength kraft straws.

Int J Biol Macromol

December 2024

School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China. Electronic address:

Article Synopsis
  • * Researchers expressed a thermostable alkaline form of FAE from Humicola insolens in Pichia pastoris, achieving an enzyme activity yield of 2.36 ± 0.21 U/mL, with optimal performance at pH 7.5 and 70 °C.
  • * Using FAE as a pretreatment before chemical bleaching reduced the need for chemical agents by 20%, decreased the kappa value by 10.64%, and improved pulp strength by increasing viscosity by
View Article and Find Full Text PDF

Circular Melt-Spun Textile Fibers from Polyethylene-like Long-Chain Polyesters.

ACS Appl Polym Mater

August 2024

Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.

As textiles contribute considerably to overall anthropogenic pollution and resource consumption, increasing their circularity is essential. We report the melt-spinning of long-chain polyesters, materials recently shown to be fully chemically recyclable under mild conditions, as well as biodegradable. High-quality uniform fibers are enabled by the polymers' favorable combination of thermal stability, crystallization ability, melt strength, and homogeneity.

View Article and Find Full Text PDF

This study investigated the impact of Candida tropicalis NITCSK13 on sugarcane bagasse (SCB) consolidated bioprocessing (CSB) using various parameters, such as pH, steam explosion (STEX) pretreatment, and temperature (at two different temperatures, cellulose hydrolysis and ethanol fermentation). The backpropagation neural network (BPNN) method simulated the optimal CSB conditions, achieving a maximum ethanol yield of 44 ± 0.32 g/L (0.

View Article and Find Full Text PDF

Sub-genomic RNAi-assisted strain evolution of filamentous fungi for enhanced protein production.

Appl Environ Microbiol

July 2024

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

Genetic engineering at the genomic scale provides a rapid means to evolve microbes for desirable traits. However, in many filamentous fungi, such trials are daunted by low transformation efficiency. Differentially expressed genes under certain conditions may contain important regulatory factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!