MnO(x)-modified ZnAl-LDOs as high-performance adsorbent for the removal of methyl orange.

Dalton Trans

College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P.R. China.

Published: May 2014

MnO(x) modified ZnAl layered double oxides (M-LDO) nanocomposites were prepared through an intercalation/reduction/calcination process. The morphology and crystal structure of M-LDO were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) analysis methods. The results confirmed that the manganese oxide nanoparticles were well distributed on the LDO support. Methyl orange (MO) was chosen as a common water-soluble azo dye probe to evaluate the adsorption performance of M-LDO. The effects of MO initial concentration, agitation time, and temperature on MO adsorption were investigated. It was found that adsorption equilibrium data were best represented by the Langmuir and Redlich-Peterson isotherms and the maximum adsorption capacity was 617.28 mg g(-1) obtained from the Langmuir isotherm, which was much larger than some reported adsorbents. Besides, the adsorption process was spontaneous and endothermic in nature and followed a pseudo-second-order kinetic model. The mechanism of the adsorption process was elaborated by an intraparticle diffusion model. Moreover, the regeneration test of M-LDO was carried out and it showed that the used M-LDO was feasible for at least five times. In principle, this adsorbent with a high adsorption capacity and great reutilization performance could be a very promising adsorbent for wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt53597eDOI Listing

Publication Analysis

Top Keywords

methyl orange
8
adsorption capacity
8
adsorption process
8
adsorption
7
m-ldo
5
mnox-modified znal-ldos
4
znal-ldos high-performance
4
high-performance adsorbent
4
adsorbent removal
4
removal methyl
4

Similar Publications

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

Fabrication of a novel reusable nanozyme by immobilizing Co-doped carbon dots on nanocellulose aerogels for efficient dyes degradation.

Int J Biol Macromol

January 2025

Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:

Carbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme.

View Article and Find Full Text PDF

This research focuses on the development of a novel Ru-doped TiO/grapefruit peel biochar/FeO (Ru-TiO/PC/FeO) composite catalyst, which exhibits exceptional photocatalytic efficacy under simulated solar light irradiation. The catalyst is highly effective in the degradation of rhodamine B (RhB), methylene blue (MB), methyl orange (MO), as well as actual industrial dye wastewater (IDW), and can be recovered magnetically for multiple reuse cycles. Significantly, the PCTRF-100 sample exhibited degradation efficiencies of 99.

View Article and Find Full Text PDF

Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.

View Article and Find Full Text PDF

A potential eco-friendly degradation of methyl orange by water-ball (sodium polyacrylate) stabilized zero valent iron nanoparticles.

Heliyon

January 2025

Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.

This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!