Hydrodynamic delivery of Cre protein to lineage-mark or time-stamp mouse hepatocytes in situ.

PLoS One

Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America.

Published: January 2016

Cre-responsive fluorescent marker alleles are powerful tools for cell lineage tracing in mice; however their utility is limited by regulation of Cre activity. When targeting hepatocytes, hydrodynamic delivery of a Cre-expression plasmid can convert Cre-responsive alleles without inducing the intracellular or systemic antiviral responses often associated with viral-derived Cre-expression vectors. In this method, rapid high-volume intravenous inoculation induces hepatocyte-targeted uptake of extracellular molecules. Here we tested whether hydrodynamic delivery of Cre protein or Cre fused to the HIV-TAT cell-penetrating peptide could convert Cre-responsive reporters in hepatocytes of mice. Hydrodynamic delivery of 2 nmol of either Cre or TAT-Cre protein converted the reporter allele in 5 to 20% of hepatocytes. Neither protein gave detectable Cre activity in endothelia, non-liver organs, or non-hepatocyte cells in liver. Using mice homozygous for a Cre-responsive marker that directs red- (Cre-naïve) or green- (Cre-converted) fluorescent proteins to the nucleus, we assessed sub-saturation Cre-activity. One month after hydrodynamic inoculation with Cre protein, 58% of hepatocyte nuclei that were green were also red, indicating that less than half of the hepatocytes that had obtained enough Cre to convert one marker allele to green were able to convert all alleles. For comparison, one month after hydrodynamic delivery of a Cre-expression plasmid with a weak promoter, only 26% of the green nuclei were also red. Our results show that hydrodynamic delivery of Cre protein allows rapid allelic conversion in hepatocytes, but Cre-activity is sub-saturating so many cells will not convert multiple Cre-responsive alleles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953374PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091219PLOS

Publication Analysis

Top Keywords

hydrodynamic delivery
24
cre protein
16
delivery cre
12
cre
9
cre activity
8
delivery cre-expression
8
cre-expression plasmid
8
convert cre-responsive
8
cre-responsive alleles
8
month hydrodynamic
8

Similar Publications

A comprehensive approach enabling a quantitative interpretation of poly-l-arginine (PARG) adsorption kinetics at solid/electrolyte interfaces was developed. The first step involved all-atom molecular dynamics (MD) modeling of physicochemical characteristics yielding PARG molecule conformations, its contour length, and the cross-section area. It was also shown that PARG molecules, even in concentrated electrolyte solutions (100 mM NaCl), assume a largely elongated shape with an aspect ratio of 36.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) and messenger RNA (mRNA) have drawn considerable attention in recent years due to their ability to modulate the expression of specific disease-related proteins. However, it is difficult to find safe, robust, and effective RNA delivery systems suitable for pulmonary delivery to treat lung diseases. In this study, two cationic peptides, namely LAH4-L1 and PEGKL4, were employed as non-viral vectors for siRNA and mRNA delivery.

View Article and Find Full Text PDF

This study advances microfluidic probe (MFP) technology through the development of a 3D-printed Microfluidic Mixing Probe (MMP), which integrates a built-in pre-mixer network of channels and features a lined array of paired injection and aspiration apertures. By combining the concepts of hydrodynamic flow confinements (HFCs) and "Christmas-tree" concentration gradient generation, the MMP can produce multiple concentration-varying flow dipoles, ranging from 0 to 100%, within an open microfluidic environment. This innovation overcomes previous limitations of MFPs, which only produced homogeneous bioreagents, by utilizing the pre-mixer to create distinct concentration of injected biochemicals.

View Article and Find Full Text PDF

Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics.

View Article and Find Full Text PDF

The administration of surfactant aerosol therapy to preterm infants receiving continuous positive airway pressure (CPAP) respiratory support is highly challenging due to small flow passages, relatively high ventilation flow rates, rapid breathing and small inhalation volumes. To overcome these challenges, the objective of this study was to implement a validated computational fluid dynamics (CFD) model and develop an overlay nasal prong interface design for use with CPAP respiratory support that enables high efficiency powder aerosol delivery to the lungs of preterm infants when needed (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!