Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been suggested as an attractive target to improve insulin sensitivity in different cell types. In the present work, we have investigated the effect of PTP1B deficiency on the response of human and murine macrophages. Using in vitro and in vivo approaches in mice and silencing PTP1B in human macrophages with specific siRNAs, we have demonstrated that PTP1B deficiency increases the effects of pro-inflammatory stimuli in both human and rodent macrophages at the time that decreases the response to alternative stimulation. Moreover, the absence of PTP1B induces a loss of viability in resting macrophages and mainly after activation through the classic pathway. Analysis of early gene expression in macrophages treated with pro-inflammatory stimuli confirmed this exacerbated inflammatory response in PTP1B-deficient macrophages. Microarray analysis in samples from wild-type and PTP1B-deficient macrophages obtained after 24 h of pro-inflammatory stimulation showed an activation of the p53 pathway, including the excision base repair pathway and the insulin signaling pathway in the absence of PTP1B. In animal models of lipopolysaccharide (LPS) and D-galactosamine challenge as a way to reveal in vivo inflammatory responses, animals lacking PTP1B exhibited a higher rate of death. Moreover, these animals showed an enhanced response to irradiation, in agreement with the data obtained in the microarray analysis. In summary, these results indicate that, although inhibition of PTP1B has potential benefits for the treatment of diabetes, it accentuates pro-inflammatory responses compromising at least macrophage viability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973223 | PMC |
http://dx.doi.org/10.1038/cddis.2014.90 | DOI Listing |
Comput Biol Med
January 2025
Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; VNU University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam.
α-d-Glucose-conjugated thioureas 8a-w of substituted 4,6-diaryl-2-aminopyrimindines were designed, synthesized, and screened for their antidiabetic inhibitory activity. The thioureas with the strongest potential inhibitory activity included 8f (IC = 11.32 ± 0.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland.
Introduction: This article describes the invention of graphene oxide (GO) or reduced graphene oxide (rGO) functionalised with 2-methoxy estradiol. The presence of polar hydroxyl groups enables the binding of 2-ME to GO/rGO through hydrogen bonds with epoxy and hydroxyl groups located on the surface and carbonyl and carboxyl groups located at the edges of graphene flake sheets.
Methods: The patented method of producing the subject of the invention and the research results regarding its anticancer effectiveness via cytotoxicity in an in vivo model (against A375 melanoma and 143B osteosarcoma cells) are described.
Phytochemistry
January 2025
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi, 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100039, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China. Electronic address:
Twelve flavonoid glycosides including five undescribed ones, lepisativutimines Q-U, were isolated and identified from Lepidium sativum seeds. Acid hydrolysis followed by acetic derivatization and GC analysis were conducted to determine the absolute configurations for sugars. Lepisativutimine U and beitingxinhuangtong A were uncommon kaempferol 8-S-glycosides, and complete NMR data of beitingxinhuangtong A were provided for the first time.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
Red blood cells (RBCs) are the main cells of the blood, perform numerous functions within the body and are in continuous contact with endogenous and exogenous molecules. In this context, the study aims to investigate the effect of epicatechin (EC) (flavan-3-ols) on the erythrocytes, analyzing the protective effect of the molecule and the action exerted on metabolism and RBC membrane. The effect of EC on RBC viability has been evaluated through the change in hemolysis and methemoglobin, assessing caspase 3 activity and performing a cytofluorometric analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!