Candida albicans is a major cause of invasive fungal infections worldwide. Upon infection and when in contact with human plasma as well as body fluids the fungus is challenged by the activated complement system a central part of the human innate immune response. C. albicans controls and evades host complement attack by binding several human complement regulators like Factor H, Factor H-like protein 1 and C4BP to the surface. Gpm1 (Phosphoglycerate mutase 1) is one fungal Factor H/FHL1 -binding protein. As Gpm1 is surface exposed, we asked whether Gpm1 also contributes to host cell attachment. Here, we show by flow cytometry and by laser scanning microscopy that candida Gpm1 binds to human umbilical vein endothelial cells (HUVEC) to keratinocytes (HaCaT), and also to monocytic U937 cells. Wild type candida did bind, but the candida gpm1Δ/Δ knock-out mutant did not bind to these human cells. In addition Gpm1 when attached to latex beads also conferred attachment to human endothelial cells. When analyzing Gpm1-binding to a panel of extracellular matrix proteins, the human glycoprotein vitronectin was identified as a new Gpm1 ligand. Vitronectin is a component of the extracellular matrix and also a regulator of the terminal complement pathway. Vitronectin is present on the surface of HUVEC and keratinocytes and acts as a surface ligand for fungal Gpm1. Gpm1 and vitronectin colocalize on the surface of HUVEC and HaCaT as revealed by laser scanning microscopy. The Gpm1 vitronectin interaction is inhibited by heparin and the interaction is also ionic strength dependent. Taken together, Gpm1 the candida surface protein binds to vitronectin and mediates fungal adhesion to human endothelial cells. Thus fungal Gpm1 and human vitronectin represent a new set of proteins that are relevant for fungal attachment to human cells interaction. Blockade of the Gpm1 vitronectin interaction might provide a new target for therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953207 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090796 | PLOS |
Shock
January 2025
Pharmacology, University of Vermont, Burlington, VT.
Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.
View Article and Find Full Text PDFPLoS Biol
January 2025
Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
Definitive hematopoietic stem and progenitor cells (HSPCs) arise from a small number of hemogenic endothelial cells (HECs) within the developing embryo. Understanding the origin and ontogeny of HSPCs is of considerable interest and potential therapeutic value. It has been proposed that the murine placenta contains HECs that differentiate into HSPCs.
View Article and Find Full Text PDFReproduction
January 2025
H Ka, Biological Science and Technology, Yonsei University - Mirae Campus, Wonju, Korea (the Republic of).
To successfully establish and maintain pregnancy in pigs, a variety of factors must work together at the maternal-conceptus interface to form an immune environment appropriate for both the mother and the conceptus. Our transcriptomics study has shown that cluster of differentiation ligand 40 (CD40L) and its receptor CD40, which are known to play important roles in regulating cell- and antibody-mediated immunity, are expressed in the endometrium during early pregnancy. However, the roles of the CD40L and CD40 signaling system are not well understood.
View Article and Find Full Text PDFJCI Insight
January 2025
Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States of America.
Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!