The primary taste and healthy benefits of tea are mainly attributed to tea polyphenols and caffeine. Due to very many kinds of flavonoid glycosides in tea and the lack of commercial standards of flavonoid glycosides, it is critical to develop a rapid and cheap method for determining flavonoid glycosides of tea. Contents of myricetin glycosides and quercetin glycosides in Wuyi Rock tea were determined by detecting contents of corresponding myricetin and quercetin. Optimizing hydrolysis conditions for hydrolyzing flavonoid glycosides to their corresponding flavonols including quercetin and myricetin in Wuyi Rock tea was a key technology for detecting contents of corresponding myricetin and quercetin. The results showed that hydrolysis at 2 mol/L HCl solution and at 90 °C for 1 h was an optimizing condition for hydrolyzing flavonoid glycosides to myricetin and quercetin in Wuyi Rock tea. Caffeine and seven kinds of polyphenols (GA, EGC, C, EGCG, EC, ECG, and CGA) in 20 samples of Wuyi Rock tea were simultaneously determined using a simple and fast reverse-phase high-performance liquid chromatography procedure coupled with photodiode array detector (RP-HPLC-PDAD). The results indicated that there were significant (P < 0.05) differences of ECG, CGA, ECG, and myricetin glycosides in 'Wuyi Rougui' and 'Wuyi Shuixian', which were credited with causing the difference in taste between these two cultivar of Wuyi Rock tea. The study may be useful for clarifying the cause of "cultivated varieties flavor" of Wuyi Rock tea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf4056314 | DOI Listing |
Food Chem
January 2025
Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Rainy weather restricts the formation of high-quality Wuyi rock tea (WRT). Herein, an optimized withering process for rain-soaked leaves was developed using response surface methodology. Results showed that increasing the withering temperature, relative humidity, and withering time from 25 °C to 40 °C, 80 % to 97 %, and 3 to 6 h, respectively, effectively improved the sensory qualities of the optimized primary WRT (WRTO) prepared from rain-soaked leaves compared with those before optimization.
View Article and Find Full Text PDFFoods
December 2024
College of Tea and Food, Wuyi University, Wuyishan 354300, China.
During the production of Wuyi rock tea, withering and fermentation play a crucial role in the primary processing of the tea, greatly influencing the development of its distinct taste characteristics. In this study, Rougui () was selected as the research object to investigate the effects of withering and fermentation on metabolites and taste characteristics in tea leaves. The findings revealed that a total of 1249 metabolites were detected in Rougui leaves at various processing stages, of which only 40 key metabolites were significantly altered.
View Article and Find Full Text PDFAs an important process for enhancing aroma of Wuyi rock tea, roasting has gradually been applied to the processing of bud green tea (BGT). However, there is a lack of comprehensive research on the impact of roasting on BGT aroma. This research provides a detailed analysis of the changes in aroma perception and compounds during the low-temperature roasting process (105°C, 90 minutes) of BGT.
View Article and Find Full Text PDFFood Sci Nutr
October 2024
College of Tea and Food Science, Wuyi University Wuyishan China.
Wuyi rock teas of different storage duration have different flavor, bioactivity, and market value, Shuixian is a main variety of Wuyi rock tea. In this study, metabolites composition of Shuixian with different storage years were analyzed using Ultrahigh Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF-MS). A total of 1201 compounds were identified, and 104 differential compounds (VIP > 1.
View Article and Find Full Text PDFFront Plant Sci
September 2024
College of Tea and Food, Wuyi University, Wuyishan, China.
Dahongpao mother tree ( (L.) O. Ktze) is a representative of Wuyi rock tea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!