Ontogenic or age-related resistance has been noted in many pathosystems but is less often quantified or expressed in a manner that allows the concept to be applied in disease management programs. Preliminary studies indicated that leaves and fruit of three strawberry cultivars rapidly acquired ontogenic resistance to the powdery mildew pathogen, Podosphaera aphanis. In the present study, we quantify the development of ontogenic resistance in controlled inoculations of 10 strawberry cultivars using diverse isolates of P. aphanis in New York and Florida, USA, and in Norway. We report the differential and organ-specific development of ontogenic resistance in the receptacle and externally borne strawberry achenes. We further report that rapid development of ontogenic resistance prior to unfolding of emergent leaves, rather than differential susceptibility of adaxial versus abaxial leaf surfaces, may explain the commonly observed predominance of powdery mildew on the lower leaf surfaces. Susceptibility of leaves and fruit declined exponentially with age. Receptacle tissue of berries inoculated at four phenological stages from bloom to ripe fruit became nearly immune to infection approximately 10 to 15 days after bloom, as fruit transitioned from the early green to the late green or early white stage of berry development, although the achenes remained susceptible for a longer period. Leaves also acquired ontogenic resistance early in their development, and they were highly resistant shortly after unfolding and before the upper surface was fully exposed. No significant difference was found in the susceptibility of the adaxial versus abaxial surfaces. The rapid acquisition of ontogenic resistance by leaves and fruit revealed a narrow window of susceptibility to which management programs might be advantageously adapted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-12-13-0345-R | DOI Listing |
Plant Dis
November 2024
Università Cattolica del Sacro Cuore Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Piacenza, Emilia-Romagna, Italy;
Plant resistance inducers (PRIs) are promising alternatives to chemical fungicides. Their effectiveness against grapevine downy mildew (DM) has been demonstrated for leaves, yet research on berry clusters is limited. We investigated the efficacy of six PRIs on clusters of cv.
View Article and Find Full Text PDFFront Plant Sci
July 2024
Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.
Introduction: As leaves grow, they transition from a low-microbe environment embedded in shoot apex to a more complex one exposed to phyllosphere microbiomes. Such change requires a coordinated reprogramming of cellular responses to biotic stresses. It remains unclear how plants shift from fast growth to robust resistance during organ development.
View Article and Find Full Text PDFGene Expr Patterns
June 2024
ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India. Electronic address:
Recombination activating genes (RAGs) mediates the process of rearrangement and somatic recombination (V(D)J) to generate different antibody repertoire. Studies on the expression pattern of adaptive immune genes during ontogenic development are crucial for the formulation of fish immunization strategy. In the present study, Nile tilapia was taken to explore the relative expression profile of RAG genes during their developmental stages.
View Article and Find Full Text PDFJ Math Biol
February 2024
Université Côte d'Azur, Inria, INRAE, CNRS, MACBES, Nice, France.
Ontogenic resistance has been described for many plant-pathogen systems. Conversely, coffee leaf rust, a major fungal disease that drastically reduces coffee production, exhibits a form of ontogenic susceptibility, with a higher infection risk for mature leaves. To take into account stage-dependent crop response to phytopathogenic fungi, we developed an SEIR-U epidemiological model, where U stands for spores, which differentiates between young and mature leaves.
View Article and Find Full Text PDFJ Immunol
March 2024
Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
It is becoming clear that every organ is seeded by a population of fetal liver-derived macrophages that are replaced at different rates by monocyte-derived macrophages. Using the Ms4a3tdTomato reporter mouse that reports on monocyte-derived alveolar macrophages (Mo-AMs) and our ability to examine AM function using our multichannel intravital microscopy, we examined the fetal-liver derived alveolar macrophage (FL-AM) and Mo-AM populations within the same mouse under various environmental conditions. The experiments unveiled that AMs migrated from alveolus to alveolus and phagocytosed bacteria identically regardless of ontogenic origin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!