Mucosal immune responses against Pygidiopsis summa (Trematoda: Heterophyidae) infection were studied in ICR mice. Experimental groups consisted of group 1 (uninfected controls), group 2 (infection with 200 metacercariae), and group 3 (immunosuppression with Depo-Medrol and infection with 200 metacercariae). Worms were recovered in the small intestine at days 1, 3, 5, and 7 post-infection (PI). Intestinal intraepithelial lymphocytes (IEL), mast cells, and goblet cells were counted in intestinal tissue sections stained with Giemsa, astra-blue, and periodic acid-Schiff, respectively. Mucosal IgA levels were measured by ELISA. Expulsion of P. summa from the mouse intestine began to occur from days 3-5 PI which sustained until day 7 PI. The worm expulsion was positively correlated with proliferation of IEL, mast cells, goblet cells, and increase of IgA, although in the case of mast cells significant increase was seen only at day 7 PI. Immunosuppression suppressed all these immune effectors and inhibited worm reduction in the intestine until day 7 PI. The results suggested that various immune effectors which include IEL, goblet cells, mast cells, and IgA play roles in regulating the intestinal mucosal immunity of ICR mice against P. summa infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948990 | PMC |
http://dx.doi.org/10.3347/kjp.2014.52.1.27 | DOI Listing |
Alzheimers Dement
December 2024
All India Institute of Medical Sciences, Nagpur, Nagpur, Maharashtra, India.
Background: Multiple Sclerosis (MS) is a chronic, etiologically complex disease of the central nervous system (CNS) characterized by inflammation, demyelination, and neuronal damage. MS has seven categories based on disease course. Seventy to eighty percent of individuals with MS initially develop a clinical pattern with periodic relapses and remissions, called relapsing-remitting MS (RRMS).
View Article and Find Full Text PDFBackground: A complex, multicellular disease with genetic and immunological elements, Alzheimer's disease (AD) affects millions worldwide. There has been previous research linking AD to the missense variants ABI3-rs616338-T and PLCG2-rs72824905-G, and the altered expression of these genes has been shown to disrupt microglial function. In our understanding of AD risk and resilience, limited research has been conducted on how these variants affect microglial subtypes and states in AD.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Introduction: A subtype of human mast cells (MCs) found in the skin and to a lesser extent in the lung and gut express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR-X2 (MRGPRX2, mouse counterpart MrgprB2). In addition to drug-induced pseudoallergy and cutaneous disorders, MrgprB2 contributes to ulcerative colitis, IgE-mediated lung inflammation and systemic anaphylaxis. Interestingly, most agonists activate MRGPRX2 with higher potency than MrgprB2.
View Article and Find Full Text PDFJ Asthma Allergy
December 2024
Department of Public Health, School of Allied Medical Sciences, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda.
Allergies represent a significant and growing public health concern, affecting millions worldwide and burdening healthcare systems substantially. Accurate diagnosis and understanding of allergy is crucial for effective management and treatment. This review aims to explore the historical evolution, current advances, and prospects of histopathological and cytological techniques in allergy diagnosis, highlighting their crucial role in modern medicine.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
Tryptases represent the most abundant constituent of human mast cells, involved in extracellular matrix degradation, contributing to wound healing and metastasis. Moreover, most recently, it has been demonstrated that tryptase is angiogenic both and . Tryptase-positive mast cell number increases parallelly with increased microvascular density in both solid and hematological tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!