Urokinase-type plasminogen activator receptor (uPAR) is overexpressed in the tumor-stromal invasive microenvironment in many human cancers, including medulloblastoma. The role of uPAR in tumor progression and angiogenesis has been well characterized. Previously, in medulloblastoma cells, we showed that ionizing radiation (IR)-induced uPAR is a potent activator of cancer stem cell (CSC)-like properties and is associated with various transcription factors that are involved during embryonic development and cancer. In the present study, we show that uPAR protein acts as a cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand-1. The Hand-1 protein plays an essential role in the differentiation of trophoblast giant cells and cardiac morphogenesis, and yet its precise cellular function and its contribution to cancer remain mostly unknown. We also observed that the Hand-1 protein is upregulated in uPAR short hairpin RNA-treated medulloblastoma cells and accompanies sustained cell growth and angiogenesis. Furthermore, IR-induced uPAR overexpression negatively regulates Hand-1 activity and results in the stabilization of angiogenesis-promoting molecules, including hypoxia-inducible factor-1α. Finally, uPAR overexpression and its association with Hand-1 after IR treatment indicate that uPAR is capable of regulating Hand-1 and that uPAR has a role in the process of IR-induced tumor angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-13-0892DOI Listing

Publication Analysis

Top Keywords

upar
10
hand-1
8
cytoplasmic sequestration
8
sequestration factor
8
factor hand-1
8
medulloblastoma cells
8
ir-induced upar
8
hand-1 protein
8
upar overexpression
8
nuclear translocation
4

Similar Publications

Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692).

View Article and Find Full Text PDF

Global insights and advances in edible coatings or films toward quality maintenance and reduced postharvest losses of fruit and vegetables: An updated review.

Compr Rev Food Sci Food Saf

January 2025

Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Transitioning to safe, nonthermal, and edible strategies for maintaining fruit and vegetable (F&V) quality, reducing postharvest losses (up to 55% annually), and ensuring food security requires extensive research and innovation in postharvest technologies. This review aims to provide an updated understanding of edible coatings or films (ECF), focusing on their role in reducing F&V postharvest losses, based on data from the last 40 years retrieved from the Web of Science database. The global ECF research network is represented by publication trends, majorly researched F&V, key research areas, influential and emerging authors, and global research ranking.

View Article and Find Full Text PDF

Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.

View Article and Find Full Text PDF

Correction: (Thio)chromenone derivatives exhibit anti-metastatic effects through selective inhibition of uPAR in cancer cell lines: discovery of an uPAR-targeting fluorescent probe.

Chem Commun (Camb)

January 2025

Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.

Correction for '(Thio)chromenone derivatives exhibit anti-metastatic effects through selective inhibition of uPAR in cancer cell lines: discovery of an uPAR-targeting fluorescent probe' by So-Young Chun , , 2025, https://doi.org/10.1039/D4CC05907G.

View Article and Find Full Text PDF

Optical molecular imaging in oral- and oropharyngeal squamous cell carcinoma using a novel uPAR-targeting near-infrared imaging agent FG001 (ICG-Glu-Glu-AE105): An explorative phase II clinical trial.

Theranostics

January 2025

Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (CMI), Copenhagen University Hospital, Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark.

: In oral and oropharyngeal squamous cell carcinoma (OSCC, OPSCC), frequent inadequate surgical margins highlight the importance of precise intraoperative identification and delineation of cancerous tissue for improving patient outcomes. : A prospective, open-label, single-center, single dose, exploratory phase II clinical trial (EudraCT 2022-001361-12) to assess the efficacy of the novel uPAR-targeting near-infrared imaging agent, FG001, for intraoperative detection of OSCC and OPSCC. Macroscopic tumor detection was quantified with sensitivity and intraoperative tumor-to-background ratio (TBR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!