The emergence of extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb) highlights the need for new therapeutics to treat tuberculosis. We are attempting to fast-track a targeted approach to drug design by generating analogues of a validated hit from molecular library screening that shares its chemical scaffold with a current therapeutic, the anti-arthritic drug Lobenzarit (LBZ). Our target, anthranilate phosphoribosyltransferase (AnPRT), is an enzyme from the tryptophan biosynthetic pathway in Mtb. A bifurcated hydrogen bond was found to be a key feature of the LBZ-like chemical scaffold and critical for enzyme inhibition. We have determined crystal structures of compounds in complex with the enzyme that indicate that the bifurcated hydrogen bond assists in orientating compounds in the correct conformation to interact with key residues in the substrate-binding tunnel of Mtb-AnPRT. Characterising the inhibitory potency of the hit and its analogues in different ways proved useful, due to the multiple substrates and substrate binding sites of this enzyme. Binding in a site other than the catalytic site was found to be associated with partial inhibition. An analogue, 2-(2-5-methylcarboxyphenylamino)-3-methylbenzoic acid, that bound at the catalytic site and caused complete, rather than partial, inhibition of enzyme activity was found. Therefore, we designed and synthesised an extended version of the scaffold on the basis of this observation. The resultant compound, 2,6-bis-(2-carboxyphenylamino)benzoate, is a 40-fold more potent inhibitor of the enzyme than the original hit and provides direction for further structure-based drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201300628DOI Listing

Publication Analysis

Top Keywords

chemical scaffold
12
anti-arthritic drug
8
drug lobenzarit
8
mycobacterium tuberculosis
8
drug design
8
bifurcated hydrogen
8
hydrogen bond
8
catalytic site
8
partial inhibition
8
enzyme
6

Similar Publications

PbsNRs: predict the potential binders and scaffolds for nuclear receptors.

Brief Bioinform

November 2024

Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China.

Nuclear receptors (NRs) are a class of essential proteins that regulate the expression of specific genes and are associated with multiple diseases. In silico methods for prescreening potential NR binders with predictive binding ability are highly desired for NR-related drug development but are rarely reported. Here, we present the PbsNRs (Predicting binders and scaffolds for Nuclear Receptors), a user-friendly web server designed to predict the potential NR binders and scaffolds through proteochemometric modeling.

View Article and Find Full Text PDF

Applications of innovative synthetic strategies in anticancer drug Discovery: The Driving Force of new chemical reactions.

Bioorg Med Chem Lett

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:

The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity.

View Article and Find Full Text PDF

Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures.

View Article and Find Full Text PDF

Synthesis and discovery of simplified pleurotin analogs bearing tricyclic core as novel thioredoxin reductase inhibitors.

Eur J Med Chem

January 2025

Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou Medical College, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China. Electronic address:

Pleurotin (1) is a benzoquinone meroterpenoid known for its wide-spectrum antitumor and antibiotic activities, notably acting as natural inhibitors of the thioredoxin reductase (TrxR). Pleurotin (1) has been chemically synthesized, but only in milligram quantities through at least 13 longest linear steps with 0.8 % overall yield due to its complex structure such as fused hexacyclic core with 8 contiguous stereocenters.

View Article and Find Full Text PDF

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!