Canonical structures of short CDR-L3 in antibodies.

Proteins

Biotechnology Center of Excellence, Janssen Research and Development, LLC, Spring House, Pennsylvania, 19477.

Published: August 2014

Despite sequence diversity, five out of six hypervariable loops in antibodies assume a limited number of conformations called canonical structures. Their correct identification is essential for successful prediction of antibody structure. This in turn requires regular updates of the classification of canonical structures to match the expanding experimental database. Antibodies with the eight-residue CDR-L3 represent the second most common type of antibodies after those with the nine-residue CDR-L3. We have analyzed all crystal structures of Fab and Fv with the eight-residue CDR-L3 and identified three major canonical structures covering 82% of a nonredundant set. In most cases, the canonical structure is defined by the absence or presence and position of a proline residue within the CDR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260120PMC
http://dx.doi.org/10.1002/prot.24559DOI Listing

Publication Analysis

Top Keywords

canonical structures
16
eight-residue cdr-l3
8
canonical
5
structures short
4
cdr-l3
4
short cdr-l3
4
antibodies
4
cdr-l3 antibodies
4
antibodies despite
4
despite sequence
4

Similar Publications

Polyploidy is a powerful mechanism driving genetic, physiological, and phenotypic changes among cytotypes of the same species across both large and small geographic scales. These changes can significantly shape population structure and increase the evolutionary and adaptation potential of cytotypes. , an edaphic steno-endemic species with a narrow distribution in the Balkan Peninsula, serves as an intriguing case study.

View Article and Find Full Text PDF

In addition to the 20 canonical amino acids encoded in the genetic code, there are two non-canonical ones: selenocysteine and pyrrolysine. The discovery of pyrrolysine synthetases (PylRSs) was a key event in the field of genetic code expansion research. The importance of this discovery is mainly due to the fact that the translation systems involving PylRS, pyrrolysine tRNA (tRNA) and pyrrolysine are orthogonal to the endogenous translation systems of organisms that do not use this amino acid in protein synthesis.

View Article and Find Full Text PDF

The present study collected wastewater samples from fourteen (14) full-scale wastewater treatment plants (WWTPs) at different treatment stages, namely, primary, secondary, and tertiary, to understand the impact of WWTP processes on the bacterial community structure, their role, and their correlation with environmental variables (water quality parameters). The findings showed that the bacterial communities in the primary, secondary, and tertiary treatment stages are more or less similar. They are made up of 42 phyla, 84 classes, 154 orders, 212 families, and 268 genera.

View Article and Find Full Text PDF

The surface topography and chemistry of titanium-aluminum-vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates.

View Article and Find Full Text PDF

A topological constraint, characterized by the Casimir invariant, imparts non-trivial structures in a complex system. We construct a kinetic theory in a constrained phase space (infinite-dimensional function space of macroscopic fields), and characterize a self-organized structure as a thermal equilibrium on a leaf of foliated phase space. By introducing a model of a grand canonical ensemble, the Casimir invariant is interpreted as the number of topological particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!