Nanopore formation in silicon films has previously been demonstrated using rapid thermal crystallization of ultrathin (15 nm) amorphous Si films sandwiched between nm-thick SiO2 layers. In this work, the silicon dioxide barrier layers are replaced with silicon nitride, resulting in nanoporous silicon films with unprecedented pore density and novel morphology. Four different thin film stack systems including silicon nitride/silicon/silicon nitride (NSN), silicon dioxide/silicon/silicon nitride (OSN), silicon nitride/silicon/silicon dioxide (NSO), and silicon dioxide/silicon/silicon dioxide (OSO) are tested under different annealing temperatures. Generally the pore size, pore density, and porosity positively correlate with the annealing temperature for all four systems. The NSN system yields substantially higher porosity and pore density than the OSO system, with the OSN and NSO stack characteristics fallings between these extremes. The higher porosity of the Si membrane in the NSN stack is primarily due to the pore formation enhancement in the Si film. It is hypothesized that this could result from the interfacial energy difference between the silicon/silicon nitride and silicon/silicon dioxide, which influences the Si crystallization process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201303447 | DOI Listing |
Nano Lett
January 2025
Advanced Energy Storage Technology and Equipment Research Institute, Ningbo University, Ningbo, Zhejiang 315211, China.
Plateau-dominated hard carbon with a high rate of performance is challenging to obtain, and the in-depth mechanism of pore structure on the diffusion of sodium ions remains unclear. In this study, a facile liquid-phase molecular reconstruction strategy is proposed to regulate the orientation of the β-cyclodextrin molecules and prepare spherical hard carbon with continuous and ordered pore channels. Through detailed characterization, this approach is confirmed to optimize the accumulation of Na in the dispersion region, thus improving the plateau kinetics and enhancing the utilization of closed pores.
View Article and Find Full Text PDFAdv Mater
January 2025
Extreme Materials Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.
Biogenic-based foam, renowned for its sustainable and eco-friendly properties, is emerging as a promising thermal insulating material with the potential to significantly enhance energy efficiency and sustainability in building applications. However, its relatively high thermal conductivity, large-pore configurations, and energy-intensive manufacturing processes hinder its widespread use. Here, we report on the scalable, one-pot synthesis of biogenic foams achieved by integrating recycled paper pulp and in situ nanoporous silica formation, resulting in a hierarchical structure comprising both micropores and nanopores.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0FA, UK.
Methanol adsorption isotherms of fresh f-ZSM-5 and steamed s-ZSM-5 (Si/Al ≈ 40) are investigated experimentally at room temperature under equilibrium and by grand canonical Monte Carlo (GCMC) simulations with the aim of understanding the adsorption capacity, geometry and sites as a function of steam treatment (at 573 K for 24 h). Methanol adsorption energies calculated by GCMC are complemented by density functional theory (DFT) employing both periodic and quantum mechanics/molecular mechanics (QM/MM) techniques. Physical and textural properties of f-ZSM-5 and s-ZSM-5 are characterised by diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) and N-physisorption, which form a basis to construct models for f-ZSM-5 and s-ZSM-5 to simulate methanol adsorption isotherms by GCMC.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
Supercapacitors (SCs) are gaining attention in energy storage due to their high-power density, rapid charge/discharge ability, and long life cycle. Improving these features relies on developing advanced electrode materials with better energy storage properties. This study explores UiO-66, a zirconium-based metal-organic framework (MOF), which offers advantages like a large surface area, tunable pore sizes, and stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!