TaqMan™ fluorogenic detection system to analyze gene transcription in autopsy material.

Methods Mol Biol

Department of Legal Medicine, Osaka City University Medical School, Asahimachi 1-4-3, Osaka, 545-8585, Japan,

Published: November 2014

Real-time polymerase chain reaction using a TaqMan fluorogenic detection system is a simple and sensitive assay for quantitative analysis of gene transcription. This method is of potential usefulness in quantifying mRNA of a target gene in autopsy material that has undergone only a small amount of postmortem degradation. The TaqMan fluorogenic detection system can monitor PCR in real time using a dual-labeled fluorogenic hybridization probe (TaqMan probe) and a polymerase with 5'-3' exonuclease activity. The procedures of the quantitative reverse transcription polymerase chain reaction are as follows: RNA is extracted from autopsy material and used to synthesize cDNA by an RT reaction, and the target of interest is amplified and detected by the real-time PCR. The absolute amount of target mRNA in the sample is then determined relative to a standard curve. This chapter describes the methodology of the TaqMan fluorogenic detection system in handling autopsy material in the gene transcription assay.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-739-6_9DOI Listing

Publication Analysis

Top Keywords

fluorogenic detection
16
detection system
16
autopsy material
16
gene transcription
12
taqman fluorogenic
12
polymerase chain
8
chain reaction
8
taqman™ fluorogenic
4
detection
4
system
4

Similar Publications

Energy crisis and environmental pollution are two central themes of contemporary research towards achieving sustainable development goals (SDGs). Material chemistry is the chief discipline that can resolve glitches in these areas through the appropriate design of chemical compounds with multifunctional properties. In this regard, two stable coordination polymers (CPs) were synthesised in this work using Zn(II) (3d) and Cd(II) (d) metal nodes with 1,4-benzenedicarboxylate () as the bridging ligand and monodentate pyridyl-N coordinated 9-fluoren-2-yl-pyridin-4-ylmethylene-amine (flpy) as the fluorogenic partner.

View Article and Find Full Text PDF

CRISPR analysis based on Pt@MOF dual-modal signal for multichannel fluorescence and visual detection of norovirus.

Biosens Bioelectron

January 2025

Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China. Electronic address:

Norovirus is a globally prevalent pathogen that causes acute viral gastroenteritis across all age groups, characterized by its high infectivity and low infectious dose. Consequently, the development of rapid, sensitive, and accurate detection technologies for norovirus presents a significant challenge. In this study, we demonstrate a combination of CRISPR-Cas-based reactions with Pt@MOF-linked immunoassay-like assays.

View Article and Find Full Text PDF

In this work, we have explored the metal ion sensing properties of two bisbenzimidazole-based fluorescent probes, that differ in their conformational flexibility, in an aqueous medium. The compound with a flexible methyl spacer (1) experienced blue shifts in its absorption and emission maxima (along with a turn-off response) upon the addition of Hg ions. On the contrary, the compound with a relatively rigid structure (2) showed red shifts in both its absorption and emission maxima (along with a turn-off response) when treated with Hg under similar conditions.

View Article and Find Full Text PDF

We have employed a triazine-based conjugated polymer network (CPN) for the selective detection of hypochlorite in a semi-aqueous environment. CPNs have been widely employed in gas capture, separation, and adsorption, but the fluorescent properties of CPNs possessing extensive π-conjugated systems tend to be unexplored. Herein, we report the photophysical properties of the CPN and investigate its sensing capability towards hypochlorite.

View Article and Find Full Text PDF

Near-infrared fluorogenic RNA for in vivo imaging and sensing.

Nat Commun

January 2025

Interdisciplinary Science Center, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.

Fluorogenic RNA aptamers have various applications, including use as fluorescent tags for imaging RNA trafficking and as indicators of RNA-based sensors that exhibit fluorescence upon binding small-molecule fluorophores in living cells. Current fluorogenic RNA:fluorophore complexes typically emit visible fluorescence. However, it is challenging to develop fluorogenic RNA with near-infrared (NIR) fluorescence for in vivo imaging and sensing studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!