Bile acid sequestrants: glucose-lowering mechanisms and efficacy in type 2 diabetes.

Curr Diab Rep

Diabetes Research Division, Department of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900, Hellerup, Denmark.

Published: December 2014

Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose-lowering effect in patients with type 2 diabetes remain unclear. This article offers a review of the mechanisms behind the glucose-lowering effect of BASs, and the efficacy of BASs in the treatment of type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11892-014-0482-4DOI Listing

Publication Analysis

Top Keywords

bile acid
16
type diabetes
16
bile acids
12
acid sequestrants
8
glucose metabolism
8
patients type
8
mechanisms glucose-lowering
8
bile
7
bass
5
sequestrants glucose-lowering
4

Similar Publications

Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD).

Nutrients

December 2024

Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition.

View Article and Find Full Text PDF

Goose Deoxycholic Acid Ameliorates Liver Injury in Laying Hens with Fatty Liver Hemorrhage Syndrome by Inhibiting the Inflammatory Response.

Int J Mol Sci

January 2025

Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional and metabolic disease involving liver enlargement, hepatic steatosis, and hepatic hemorrhage as the primary symptoms. The syndrome is prone to occur during the peak laying period of laying hens, which has resulted in significant economic losses in the laying hen breeding industry; however, the specific pathogenesis of FLHS remains unclear. Our group and previous studies have shown that bile acid levels are significantly decreased during the development of fatty liver and that targeted activation of bile acid-related signaling pathways is beneficial for preventing and treating fatty liver.

View Article and Find Full Text PDF

The active metabolite of vitamin D3, calcitriol (1,25D), is widely recognised for its direct anti-proliferative and pro-differentiation effects. However, 1,25D is calcaemic, which restricts its clinical use for cancer treatment. Non-calcaemic agonists of the vitamin D receptor (VDR) could be better candidates for cancer treatment.

View Article and Find Full Text PDF

Real-world effectiveness and safety of bulevirtide monotherapy for up to 96 weeks in patients with HDV-related cirrhosis.

J Hepatol

January 2025

Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917). Electronic address:

Background And Aims: Bulevirtide (BLV) 2 mg/day is EMA approved for treatment of compensated chronic hepatitis due to Delta virus (HDV) infection, however real-life data in large cohorts of patients with cirrhosis are lacking.

Methods: Consecutive HDV-infected patients with cirrhosis starting BLV 2 mg/day since September 2019 were included in a European retrospective multicenter real-life study (SAVE-D). Patient characteristics before and during BLV treatment were collected.

View Article and Find Full Text PDF

Improved synthesis and characterization of bile acid esters: Organogelation and supramolecular properties.

Steroids

January 2025

Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310 Mérida, Yuc, México. Electronic address:

Bile acid esters and their derivatives hold significant interest due to their applications in fields such as supramolecular chemistry, biomedicine, and nanomaterials. This study revisits the synthesis and characterization of esters derived from cholic, deoxycholic, and lithocholic acids using short-chain alcohols in combination with microwave-assisted heating. The synthesized esters were analyzed for their potential as gel-forming agents, and their organogelation properties were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!