A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks.

Brain Struct Funct

Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404, Illkirch cedex, France.

Published: March 2015

Opioid receptors are G protein-coupled receptors (GPCRs) that modulate brain function at all levels of neural integration, including autonomic, sensory, emotional and cognitive processing. Mu (MOR) and delta (DOR) opioid receptors functionally interact in vivo, but whether interactions occur at circuitry, cellular or molecular levels remains unsolved. To challenge the hypothesis of MOR/DOR heteromerization in the brain, we generated redMOR/greenDOR double knock-in mice and report dual receptor mapping throughout the nervous system. Data are organized as an interactive database offering an opioid receptor atlas with concomitant MOR/DOR visualization at subcellular resolution, accessible online. We also provide co-immunoprecipitation-based evidence for receptor heteromerization in these mice. In the forebrain, MOR and DOR are mainly detected in separate neurons, suggesting system-level interactions in high-order processing. In contrast, neuronal co-localization is detected in subcortical networks essential for survival involved in eating and sexual behaviors or perception and response to aversive stimuli. In addition, potential MOR/DOR intracellular interactions within the nociceptive pathway offer novel therapeutic perspectives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341027PMC
http://dx.doi.org/10.1007/s00429-014-0717-9DOI Listing

Publication Analysis

Top Keywords

opioid receptor
8
subcortical networks
8
opioid receptors
8
mu-delta opioid
4
receptor
4
receptor brain
4
brain atlas
4
atlas reveals
4
reveals neuronal
4
neuronal co-occurrence
4

Similar Publications

Insights into the interaction between hemorphins and δ-opioid receptor from molecular modeling.

Front Mol Biosci

December 2024

Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.

Hemorphins are short atypical opioid peptide fragments embedded in the β-chain of hemoglobin. They have received considerable attention recently due to their interaction with opioid receptors. The affinity of hemorphins to opioid receptors μ-opioid receptor (MOR), δ-opioid receptor (DOR), and κ-opioid receptor (KOR) has been well established.

View Article and Find Full Text PDF

Opioid-induced respiratory depression: clinical aspects and pathophysiology of the respiratory network effects.

Am J Physiol Lung Cell Mol Physiol

December 2024

The author is retired. The positions and affiliations are those prior to his retirement.

Important insights and consensus remain lacking for risk prediction of opioid-induced respiratory depression (OIRD), reversal of respiratory depression (RD), the pathophysiology of OIRD, and which sites make the most significant contribution to its induction. The ventilatory response to inhaled carbon dioxide is the most sensitive biomarker of OIRD. To accurately predict respiratory depression (RD), a multivariant RD prospective trial using continuous capnograph and oximetry examining 5 independent variables: age ≥60, sex, opioid naivety, sleep disorders, and chronic heart failure (PRODIGY trial), was undertaken.

View Article and Find Full Text PDF

Suitable structural modifications of the functional groups at N-substituent of (-)-cis-N-normetazocine nucleus modulate the affinity and activity profile of related ligands toward opioid receptors. Our research group has developed several compounds and the most interesting ligands, LP1 and LP2, exhibited a dual-target profile for mu-opioid receptor (MOR) and delta-opioid receptor (DOR). Recent structure-affinity relationship studies led to the discovery of novel LP2 analogs (compounds 1 and 2), which demonstrated high MOR affinity in the nanomolar range.

View Article and Find Full Text PDF

Machine learning analysis of the orbitofrontal cortex transcriptome of human opioid users identifies Shisa7 as a translational target relevant for heroin-seeking leveraging a male rat model.

Biol Psychiatry

December 2024

Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Addiction Institute of Mount Sinai, New York, New York, USA. Electronic address:

Background: Identifying neurobiological targets predictive of the molecular neuropathophysiological signature of human opioid use disorder (OUD) could expedite new treatments. OUD is characterized by dysregulated cognition and goal-directed behavior mediated by the orbitofrontal cortex (OFC), and next-generation sequencing could provide insights regarding novel targets.

Methods: Here, we used machine learning to evaluate human post-mortem OFC RNA-sequencing datasets from heroin-users and controls to identify transcripts predictive of heroin use.

View Article and Find Full Text PDF

Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments.

Pharmacol Ther

December 2024

Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.. Electronic address:

G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!