Background: Calcium from different dairy sources might affect blood lipids and fecal fat excretion differently because of differences in the food matrix and nutritional composition.

Objective: We investigated whether milk- and cheese-based diets with similar calcium contents affect a saturated fatty acid-induced increase in blood lipids differently.

Design: Fifteen healthy, young men participated in a randomized 3 × 2-wk crossover study in which the following 3 isocaloric diets that were similar in fat contents and compositions were compared: control diet [nondairy diet (~500 mg Ca/d)], milk diet [semiskimmed milk-based diet (1700 mg Ca/d)], and cheese diet [semihard cow-cheese-based diet (1700 mg Ca/d)]. Blood was drawn before and after each period, and feces were collected for 5 d during each period.

Results: Saturated fatty acid-induced increases in total and low-density lipoprotein (LDL) cholesterol were lower with the milk diet (mean ± SD: 0.57 ± 0.13 and 0.53 ± 0.11 mmol/L, respectively) (P < 0.01) and cheese diet (0.41 ± 0.15 and 0.47 ± 0.12 mmol/L, respectively) (P < 0.05) than with the control diet (0.89 ± 0.12 and 0.84 ± 0.11 mmol/L, respectively). Fecal fat excretion increased more with the consumption of both the milk (5.2 ± 0.4 g/d) and cheese (5.7 ± 0.4 g/d) diets than with the control diet (3.9 ± 0.3 g/d) (P < 0.001). Changes in blood pressure, high-density lipoprotein cholesterol, triglycerides, and lipid ratios did not differ.

Conclusions: Compared with the control diet, milk- and cheese-based diets attenuated saturated fatty acid-induced increases in total and LDL cholesterol and resulted in increased fecal fat excretion; however, effects of milk and cheese did not differ. Because the diets contained similar amounts of saturated fat, similar increases in total and LDL cholesterol could be expected; however, both milk and cheese attenuated these responses, which seem to be explained by their calcium contents. This trial was registered at clinicaltrials.gov as NCT01317251.

Download full-text PDF

Source
http://dx.doi.org/10.3945/ajcn.113.077735DOI Listing

Publication Analysis

Top Keywords

fecal fat
16
fat excretion
16
control diet
16
blood lipids
12
saturated fatty
12
fatty acid-induced
12
increases total
12
ldl cholesterol
12
diet
11
young men
8

Similar Publications

Baolier Capsule's Secret Weapon: Piperine Boosts Cholesterol Excretion to Combat Atherosclerosis.

Drug Des Devel Ther

January 2025

Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical University, Southern Medical University, Foshan, 528244, People's Republic of China.

Purpose: The Baolier capsule (BLEC) is a proprietary Mongolian medicine administered for treating hypercholesterolemia and atherosclerosis (AS). However, the therapeutic effects, primary bioactive ingredients, and potential mechanisms underlying hypercholesterolemia and AS remain unclear. This study aimed to investigate the pharmacological effects, principal active ingredients, and mechanisms of BLEC against hypercholesterolemia and AS.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how 4% microalgae (MC) and fermented microalgae (FMC) affect gut bacteria and obesity in male mice, with implications for animal metabolic health.
  • Mice were divided into four diets over 12 weeks, and gut microbiome analysis showed significant changes in microbial communities for those on MC and FMC diets.
  • Results indicated that both MC and FMC could help manage metabolism-related disorders and obesity by altering gut microbiota and enhancing metabolic pathways.
View Article and Find Full Text PDF

Brown seaweed oligosaccharides (BSO) have demonstrated potential as nutraceuticals with cholesterol-lowering, anti-obesity, and anti-constipation properties. In this study, we initially examined how BSO impact body weight, blood lipid levels, and adipose tissue in a rat model of obesity induced by a high-fat diet. Our findings revealed that BSO administration significantly attenuated body weight gain, ameliorated dyslipidemia, and reduced visceral adiposity.

View Article and Find Full Text PDF

Objectives: To investigate the impact of diet-induced gut microbiota alterations on type 2 diabetes and assess the therapeutic potential of Fecal Microbiota Transplantation (FMT) in restoring a balanced gut microenvironment.

Methods: To induce type 2 diabetes, rats were fed a high-sugar high-fat diet (HSFD) for 90 days. After diabetes induction, animals were divided into an HSFD control group, a metformin group (100 mg/kg), and an FMT group (100 mg/kg), receiving treatment for an additional 90 days.

View Article and Find Full Text PDF

Gut Microbiota: An Important Participant in Childhood Obesity.

Adv Nutr

December 2024

Department of Pediatrics, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China. Electronic address:

Increasing prevalence of childhood obesity has emerged as a critical global public health concern. Recent studies have challenged the previous belief that obesity was solely a result of excessive caloric intake. Alterations in early-life gut microbiota can contribute to childhood obesity through their influence on nutrient absorption and metabolism, initiation of inflammatory responses, and regulation of gut-brain communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!