Diagnostic value of tissue monensin concentrations in horses following toxicosis.

J Vet Diagn Invest

California Animal Health and Food Safety Laboratory System (Bautista, Tahara, Mete, Puschner), School of Veterinary Medicine, University of California, Davis, CADepartment of Molecular Biosciences (Puschner), School of Veterinary Medicine, University of California, Davis, CAUniversity of Kentucky Veterinary Diagnostic Laboratory, Lexington KY (Gaskill, Bryant)

Published: May 2014

Two separate incidents of monensin exposure in horses resulting in toxicosis provided insight into the diagnostic value and interpretive criteria of various biological samples. In case 1, 25 horses broke into a shed and ingested feed that was supplemented with 800 g/ton (880 µg/g) of monensin. Within 48 hr, 1 horse had died, 2 developed cardiac arrhythmias, lethargy, and recumbency, and another was euthanized due to severe deterioration. Minimal histologic lesions were noted in the horse that died peracutely, while another showed characteristic lesions of acute cardiomyocyte degeneration and necrosis. Stomach content, heart, liver, urine, and serum revealed various detectable concentrations of monensin in clinically affected and unaffected horses with known exposure. In case 2, a pastured horse had access to a mineral mix containing 1,600 g/ton (1,760 µg/g) of monensin. Within 48 hr, the horse became symptomatic and was euthanized because of severe respiratory distress. Histologic cardiac lesions were minimal but detectable amounts of monensin were found in blood, heart, liver, and stomach contents. In both cases, monensin toxicosis was confirmed with toxicological analysis. These cases demonstrate an overall lack of correlation of monensin concentrations in various biological samples with clinical outcome. However, serum, urine, blood, liver, heart, and stomach content can be tested to confirm exposure. More importantly, the consistently higher concentrations found in heart tissue suggest this is the most useful diagnostic specimen for postmortem confirmation of toxicosis in horses especially in cases in which associated feed cannot be tested for monensin or in cases with no histologic lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1040638714523774DOI Listing

Publication Analysis

Top Keywords

monensin
9
monensin concentrations
8
horses toxicosis
8
biological samples
8
µg/g monensin
8
monensin horse
8
horse died
8
euthanized severe
8
histologic lesions
8
stomach content
8

Similar Publications

This paper presents the development of near-infrared (NIR) fluorescent probes, and , engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes and exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 () and 702 nm (), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments.

View Article and Find Full Text PDF

The poultry industry relies extensively on antibiotics and coccidiostats as essential tools for disease management and productivity enhancement. However, increasing concerns about antimicrobial resistance (AMR) and the toxicological safety of these substances have prompted a deeper examination of their broader impacts on animal and human health. This study investigates the toxicological effects of antibiotics and coccidiostats on the gut-brain axis and microbiota in turkeys, with a particular focus on molecular mechanisms that may influence neurochemical and inflammatory responses.

View Article and Find Full Text PDF

Since T cells are key mediators in the adaptive immune system, evaluating antigen-specific T cell immune responses is pivotal to understanding immune function. Commonly used methods for measuring T cell responses include Activation-Induced Marker (AIM) assays and Intracellular Cytokine Staining (ICS). However, combining these approaches has rarely been reported.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effects of supplementing an essential oil blend (0.16 g/kg DM of carvacrol, eugenol, thymol, and capsaicin) and monensin (17.6 mg/kg DM TMR) on lactation performance, feeding behavior, and rumen fermentation of high-producing dairy cows.

View Article and Find Full Text PDF

Our investigation uncovers that nanomolar concentrations of salinomycin, monensin, nigericin, and narasin (a group of potassium/sodium cation carriers) robustly enhance surface expression of CD20 antigen in B-cell-derived tumor cells, including primary malignant cells of chronic lymphocytic leukemia and diffuse large B-cell lymphoma. Experiments in vitro, ex vivo, and animal model reveal a novel approach of combining salinomycin or monensin with therapeutic anti-CD20 monoclonal antibodies or anti-CD20 CAR-T cells, significantly improving non- Hodgkin lymphoma (NHL) therapy. The results of RNA-seq, genetic editing, and chemical inhibition delineate the molecular mechanism of CD20 upregulation, at least partially, to the downregulation of MYC, the transcriptional repressor of the MS4A1 gene encoding CD20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!