Background: 123I-CMICE-013 is a novel radiotracer previously reported to have promising characteristics for single-photon emission computed tomography (SPECT) myocardial perfusion imaging. We evaluated the biokinetics and radiodosimetry of this rotenone-like 123I-labeled tracer in a microSPECT imaging-based study.

Methods: 37 to 111 MBq of 123I-CMICE-013 was synthesized and administered intravenously to 14 healthy rats. Images were acquired with a microSPECT/CT camera at various time intervals and reconstructed to allow activity quantification in the tissues of interest. Radiation dosage resulted from the injection of 123I-CMICE-013 was estimated base on the biodistribution data. Tissue uptake values from image analysis were verified by gamma-counting dissected organs ex vivo.

Results: The heart/stomach and heart/intestine uptake ratios peaked shortly after the injection of 123I-CMICE-013, meanwhile the heart/liver ratio reached 2 as early as at 23 min post-injection. Little activity was observed in the lung and overnight clearance was significant in most of the measured tissues. The radiation dosimetry analysis based on the time-activity curves provided an estimate of the effective human dose of 6.99E-03 mSv/MBq using ICRP 60 and 7.15E-03 mSv/MBq using ICRP 103, which is comparable to the popular myocardium perfusion imaging (MPI) agents such as 99mTc-tetrofosmin and 99mTc-sestamibi, as well as other 123I-based radiotracers.

Conclusions: 123I-CMICE-013 demonstrated desirable characteristics in its biokinetic and radiodosimetric profiles, supporting its potential application as a novel myocardial perfusion imaging agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995622PMC
http://dx.doi.org/10.1186/2191-219X-4-16DOI Listing

Publication Analysis

Top Keywords

myocardial perfusion
12
perfusion imaging
12
novel myocardial
8
healthy rats
8
injection 123i-cmice-013
8
123i-cmice-013
6
biodistribution radiodosimetry
4
radiodosimetry novel
4
perfusion
4
perfusion tracer
4

Similar Publications

Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification.

View Article and Find Full Text PDF

On the Effect of the Patient Table on Attenuation in Myocardial Perfusion Imaging SPECT.

EJNMMI Phys

January 2025

Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center North Rhine-Westphalia, University Hospital (Ruhr University Bochum), Medical Faculty OWL (Bielefeld University), Bad Oeynhausen, Germany.

Background: The topic of the effect of the patient table on attenuation in myocardial perfusion imaging (MPI) SPECT is gaining new relevance due to deep learning methods. Existing studies on this effect are old, rare and only consider phantom measurements, not patient studies. This study investigates the effect of the patient table on attenuation based on the difference between reconstructions of phantom scans and polar maps of patient studies.

View Article and Find Full Text PDF

Myocardial microcirculation in athletes and its relationship with cardiac remodeling (CR) and myocardial fibrosis (MF) are not fully understood. We prospectively enrolled 174 athletes and 54 healthy sedentary controls for intravoxel incoherent motion (IVIM) diffusion-weighted imaging of cardiac magnetic resonance imaging. Athletes exhibited significantly lower fast apparent diffusion coefficient (ADC) and perfusion fraction (f) in 16 myocardial segments and each blood supply area compared to controls ( < 0.

View Article and Find Full Text PDF

The integrative physiology of the left ventricle and systemic circulation is fundamental to our understanding of advanced heart failure and cardiogenic shock. In simplest terms, any increase in aortic stiffness increases the vascular afterload presented to the failing left ventricle. The net effect is increased myocardial oxygen demand and reduced coronary perfusion pressure, thereby further deteriorating contractile function.

View Article and Find Full Text PDF

Background And Aims: Skeletal muscle (SM) fat infiltration, or intermuscular adipose tissue (IMAT), reflects muscle quality and is associated with inflammation, a key determinant in cardiometabolic disease. Coronary flow reserve (CFR), a marker of coronary microvascular dysfunction (CMD), is independently associated with body mass index (BMI), inflammation and risk of heart failure, myocardial infarction, and death. The relationship between SM quality, CMD, and cardiovascular outcomes is not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!