Background: Type 1 diabetes mellitus (T1DM) is associated with cerebral compromise, typically found in patients with microangiopathy. Associations between subclinical macroangiopathy and the brain, whether or not in the presence of microangiopathy, have not been fully explored in T1DM. We hypothesized that subclinical macroangiopathy in adult T1DM may affect the brain and interacts with microangiopathy.
Methods: In 51 asymptomatic T1DM patients with, 53 without proliferative retinopathy and 51 controls, right common carotid artery ultrasound was used to assess intima media thickness (cIMT) and distensibility (cD). Neuropsychological tests for cognitive functions, and magnetic resonance imagining for white matter integrity and functional connectivity, i.e. neuronal communication, were used.
Results: After correction for confounders, cIMT was borderline significantly increased in all T1DM patients (P = 0.071), whereas cD was not statistically significantly altered (P = 0.45). Patients with proliferative retinopathy showed the largest increase in cIMT and decrease in cD. In all participants, after adjustment for confounders, increased cIMT was related to decreased white matter integrity (β = -0.198 P = 0.041) and decreased functional connectivity in visual areas (β = -0.195 P = 0.046). For cognition, there was a significant interaction between cIMT and the presence of proliferative retinopathy after adjustment for confounding factors (all P < 0.05). Increased cIMT was associated with lower general cognitive ability (β = -0.334; P = 0.018), information processing speed (β = -0.361; P = 0.010) and attention (β = -0.394; P = 0.005) scores in patients without, but not in patients with proliferative retinopathy.
Conclusions: These findings suggest that subclinical macroangiopathy may be a factor in the development of diabetes-related cognitive changes in uncomplicated T1DM, whereas in patients with advanced T1DM, proliferative retinopathy may rather be the driving force of cerebral compromise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995631 | PMC |
http://dx.doi.org/10.1186/1475-2840-13-58 | DOI Listing |
JAMA Netw Open
January 2025
Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Importance: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-corrected VA without technician costs, reduce visit time, or facilitate home monitoring of VA from fundus images obtained outside of the clinic.
Objective: To estimate spectacle-corrected VA measured on a standard eye chart among patients with diabetic macular edema (DME) in clinical practice settings using previously validated AI algorithms evaluating best-corrected VA from fundus photographs in eyes with DME.
Int J Mol Med
March 2025
Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.
View Article and Find Full Text PDFJ Vitreoretin Dis
January 2025
Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
To assess the differences in measures of diabetic retinopathy (DR) disease burden between patients in high-income vs low-income ZIP codes when presenting to retina specialists. This retrospective cohort study comprised patients who presented to a retina specialist at Duke Eye Center between 2014 and 2023 for the management of DR. The quartile of patients with the highest income was compared with the quartile with the lowest income.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.
View Article and Find Full Text PDFEye (Lond)
January 2025
Department of Surgical Sciences, University of Turin, Turin, Italy.
Purpose: This study aims to develop a deep-learning-based software capable of detecting and differentiating microaneurysms (MAs) as hyporeflective or hyperreflective on structural optical coherence tomography (OCT) images in patients with non-proliferative diabetic retinopathy (NPDR).
Methods: A retrospective cohort of 249 patients (498 eyes) diagnosed with NPDR was analysed. Structural OCT scans were obtained using the Heidelberg Spectralis HRA + OCT device.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!