ITK tunes IL-4-induced development of innate memory CD8+ T cells in a γδ T and invariant NKT cell-independent manner.

J Leukoc Biol

Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA; and Department of Veterinary and Biomedical Science, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, USA

Published: July 2014

True memory CD8(+) T cells develop post antigenic exposure and can provide life-long immune protection. More recently, other types of memory CD8(+) T cells have been described, such as the memory-like CD8(+) T cells (IMP; CD44(hi)CD122(+)) that arise spontaneously in Itk(-/-) mice, which are suggested to develop as a result of IL-4 secreted by NKT-like γδ T or PLZF(+) NKT cells found in Itk(-/-) mice. However, we report here that whereas IMP CD8(+) T cell development in Itk(-/-) mice is dependent on IL-4/STAT6 signaling, it is not dependent on any γδ T or iNKT cells. Our experiments suggest that the IMP develops as a result of tuning of the CD8(+) T cell response to exogenous IL-4 and TCR triggering by ITK and challenge the current model of IMP CD8(+) T cell development as a result of NKT-like γδ T or iNKT cells. These findings suggest that some naive CD8(+) T cells may be preprogrammed by weak homeostatic TCR signals in the presence of IL-4 to become memory phenotype cells with the ability to elaborate effector function rapidly. The role of ITK in this process suggests a mechanism by which IMP CD8(+) T cells can be generated rapidly in response to infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056274PMC
http://dx.doi.org/10.1189/jlb.1AB0913-484RRDOI Listing

Publication Analysis

Top Keywords

cd8+ cells
24
memory cd8+
12
itk-/- mice
12
imp cd8+
12
cd8+ cell
12
cells
10
cd8+
9
nkt-like γδ
8
cell development
8
γδ inkt
8

Similar Publications

Background: Oncolytic viruses (OVs) are promising immunotherapeutics to treat immunologically cold tumors. However, research on the mechanism of action of OVs in humans and clinically relevant biomarkers is still sparse. To induce strong T-cell responses against solid tumors, TILT-123 (Ad5/3-E2F-d24-hTNFa-IRES-hIL2, igrelimogene litadenorepvec) was developed.

View Article and Find Full Text PDF

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

Background: Osteosarcoma is the most common malignant bone tumour with limited treatment options and poor outcomes in advanced metastatic cases. Current immunotherapies show limited efficacy, highlighting the need for novel therapeutic approaches. Systemic immune activation by Toll-like receptor 4 (TLR4) immunostimulants has shown great promise; however, current TLR4 agonists' toxicity hinders this systemic approach in patients with osteosarcoma.

View Article and Find Full Text PDF

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin's Lymphoma (NHL), due to T-cell-mediated tumor killing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!