In this paper we describe the one-pot fabrication of hydroxyapatite (HA)-heparin composites by electrodeposition onto Ti substrates and their characterisation in terms of structure, morphology, heparin content and bioactivity. HA coatings are well known and widely applied osteointegration enhancers, but post-implant healing rate in dental applications is still suboptimal: e.g. coagulation control plays a key role and the incorporation of an anticoagulant is considered a highly desirable option. In this study, we have developed an improved, simple and robust growth procedure for single-phase, pure HA-heparin films of thickness 1/3 μm. HA-heparin, forming nanowires, has the ideal morphology for bone mineralisation. Staining assays revealed homogeneous incorporation of sizable amounts of heparin in the composite films. The bioactivities of the HA and HA-heparin coatings on Ti were compared by HeLa cell proliferation/viability tests and found to be enhanced by the presence of the anticoagulant.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-014-5186-4DOI Listing

Publication Analysis

Top Keywords

electrodeposition nanostructured
4
nanostructured bioactive
4
bioactive hydroxyapatite-heparin
4
hydroxyapatite-heparin composite
4
composite coatings
4
coatings titanium
4
titanium dental
4
dental implant
4
implant applications
4
applications paper
4

Similar Publications

Electrochemical UV-SERS of adenine on cobalt electrode.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3 LT-10257 Vilnius, Lithuania. Electronic address:

The combination of surface-enhanced Raman spectroscopy in the ultraviolet spectral region (UV-SERS) with resonance Raman scattering enhancement, referred to as UV-SERRS, enables ultrasensitive and reliable detection of biomolecules because of the strong electronic transition of many biologically important compounds in UV region. Adenine solution studies by UV-Raman spectroscopy revealed pre-resonant enhancement of various modes by 2-16 times at 325 nm excitation wavelength. Adsorption and structural properties of adenine on a cobalt electrode were probed by UV-SERS.

View Article and Find Full Text PDF

Achieving a net-zero emissions economy requires significant decarbonization of the transportation sector, which depends on the development of highly efficient electrocatalysts. Electrolytic water splitting is a promising approach to this end, with Ni-Mo alloys emerging as strong candidates for hydrogen production catalysts. This study investigates the electrodeposition of Ni and Ni-Mo nanostructured alloys with high molybdenum content onto low-carbon steel cathodes using a novel alkaline green lactate bath.

View Article and Find Full Text PDF

Trans-dimensional nanocoral gold foam interfaces affords ultrasensitive detection of influenza virus.

Anal Chim Acta

February 2025

School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, PR China. Electronic address:

Development of sensitive and cost-effective strategies for detecting influenza viruses is crucial to combat the spread of infectious diseases. In this study, a novel trans-dimensional nanocoral gold foam (NCGF) was fabricated on screen-printed carbon electrodes using hydrogen template electrodeposition method. This unique structure, with interconnected large and small pores, significantly increased the specific surface area and stability of the sensor.

View Article and Find Full Text PDF

The NiCoO Nanosheets@Carbon fibers composites have been successfully synthesized by a facile co-electrodeposition process. The mesoporous NiCoO nanosheets aligned vertically on the surface of carbon fibers and crosslinked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit high specific capacitance in a three-electrode cell.

View Article and Find Full Text PDF

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!