Purpose: Human biomonitoring (HBM) implies the assessment of internal exposure to hazardous substances by measuring the substances, their metabolites or reaction products, as well as effect parameters in human body fluids. Along with blood, plasma and urine, saliva is of increasing interest as an alternative matrix for HBM.
Methods: This paper reviews studies that measure salivary background levels of hazardous substances, elevated levels after environmental or occupational exposure, as well as references which deal with physiological and toxicokinetic behaviour of saliva and salivary parameters, respectively.
Results: The studies revealed that the determination of biomarkers in saliva is a promising approach for HBM, even if only few substances showed a satisfying correlation with exposure data or established biomonitoring matrices such as blood, plasma and urine. Saliva has been proven to be particularly suitable for substances of low molecular weight such as organic solvents, selected pesticides, cotinine, and for some specific trace elements. Besides several advantages, serious problems and limitations were identified. Above all, the complex interactions between substance properties, sampling procedure, sample preparation, measurement techniques or individual factors, and the salivary analyte level are discussed.
Conclusions: A major conclusion of the review is that more scientific studies are needed in order to systematically collect data on parameters, influencing salivary analyte levels. Crucially required is a harmonisation of the sampling as well as the sample preparation techniques and procedures, which is indispensable to achieve an overall comparability and interpretability of salivary biomarker levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00420-014-0938-5 | DOI Listing |
Heliyon
July 2024
School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Metformin (MET), a commonly prescribed medication for managing type 2 diabetes, has demonstrated various beneficial effects beyond its primary anti-diabetic efficacy. However, the mechanism underlying MET activity and its distribution within organelles remain largely unknown. In this study, we integrate multiple technologies, including chemical labeling, immunostaining, and high-resolution microscopy imaging, to visualize the accumulation of MET in organelles of cultured cells.
View Article and Find Full Text PDFNarra J
December 2024
Occupational Health and Safety Program, Faculty of Sciences and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand.
Air contamination by 1,2-dichloroethane (1,2-DCE) is recognized as a threat across countries. Addressing this problem is challenging due to the absence of clearly defined biological standards for monitoring 1,2-DCE exposure among humans. Moreover, studies on the impacts of 1,2-DCE exposure on human health are limited.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
Department of Clinical, Forensic, Environmental, and Industrial Toxicology, University Hospital of Liege, Liege, Belgium.
Designing ideal human biomonitoring studies involves the selection of reliable markers of exposure in adequate biological matrix. Besides conventional matrices such as blood or urine, hair has been increasingly investigated as a promising noninvasive alternative. However, understanding the pollutant distribution between differing biological compartments is essential for reliable interpretation of data collected.
View Article and Find Full Text PDFALTEX
January 2025
National Institutes of Health, National Institute for Environmental Health Sciences, DTT/NICEATM, Durham, NC, USA.
The integration of artificial intelligence (AI) into new approach methods (NAMs) for toxicology rep-resents a paradigm shift in chemical safety assessment. Harnessing AI appropriately has enormous potential to streamline validation efforts. This review explores the challenges, opportunities, and future directions for validating AI-based NAMs, highlighting their transformative potential while acknowledging the complexities involved in their implementation and acceptance.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China. Electronic address:
p-phenylenediamine antioxidants (PPDs) are extensively used in rubber manufacturing for their potent antioxidative properties, but PPDs and 2-anilino-5-[(4-methylpentan-2yl)amino]cyclohexa-2,5-diene-1,4-dione (6PPDQ) pose potential environmental and health risks. Existing biomonitoring methods for assessing human exposure to PPDs are labor-intensive, costly, and provide limited data. Thus, there is a critical need to develop predictive models for evaluating PPDs and 6PPDQ exposure levels to facilitate health risk assessments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!