A class of optimal covariate-adjusted response adaptive procedures is developed for phase III clinical trials when the treatment response is a survival time and there is random censoring. The basic aim is to develop an allocation design by combining the ethical aspects with statistical precision in a reasonable way under the presence of covariate information. Considering minimisation of total hazards as the ethical requirement, the proposed procedure is assessed in terms of the assignment to the better treatment and the efficiency (i.e. power) to detect a small departure in treatment effectiveness. The applicability of the proposed methodology is also illustrated using a real data set.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0962280214524177 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.
Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.
Pharmaceutics
January 2025
Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy.
Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes, tissue distribution, subcellular localization, and molecular regulation are distinct.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China.
In order to explore the water and fertilizer requirements of eggplants in the western oasis of the river, the experiment was conducted in Minle County of Gansu Province in 2022 and 2023 under three water stress gradients and three nitrogen application levels: (1) moderate water stress (W, 50-60% in field water capacity [FC]), mild water stress (W, 60-70% in FC), and full irrigation (W, 70-80% in FC); (2) low nitrogen (N, 215 kg·ha), medium nitrogen (N, 270 kg·ha), and high nitrogen (N, 325 kg·ha). Moderate and mild water stress were applied during eggplant flowering and fruiting while full irrigation was provided during the other growth stages; a control class (CK) was established with full irrigation throughout the whole plant growth without nitrogen application. This study investigated the effects of water-saving and nitrogen reduction on the yield, quality, and water-nitrogen use efficiency of eggplants in a cold and arid environment in the Hexi Oasis irrigation area of China.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
The design of optical sensors aims at providing, among other things, the highest precision in the determination of the target measurand. Many sensor systems rely on a spectral transducer to map changes in the measurand into spectral shifts of a resonance peak in the reflection or transmission spectrum, which is measured by a readout device (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!