Plasmonic sensors based on doubly-deposited tapered optical fibers.

Sensors (Basel)

Applied Optics Complutense Group, Facultad de Óptica y Optometría, Universidad Complutense, Arcos de Jalón 118, Madrid 28037, Spain.

Published: March 2014

A review of the surface plasmon resonance (SPR) transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity) and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003968PMC
http://dx.doi.org/10.3390/s140304791DOI Listing

Publication Analysis

Top Keywords

plasmonic sensors
4
sensors based
4
based doubly-deposited
4
doubly-deposited tapered
4
tapered optical
4
optical fibers
4
fibers review
4
review surface
4
surface plasmon
4
plasmon resonance
4

Similar Publications

Vascular endothelial growth factor (VEGF) is a critical angiogenesis biomarker associated with various pathological conditions, including cancer. This study leverages pre-biotinylated FcγRI interactions with IgG1-type monoclonal antibodies to develop a sensitive VEGF detection method. Utilizing surface plasmon resonance (SPR) technology, we characterized the binding dynamics of immobilized biotinylated FcγRI to an IgG1-type antibody, Bevacizumab (AVT), through kinetic studies and investigated suitable conditions for sensor surface regeneration.

View Article and Find Full Text PDF

Widening of Dynamic Detection Range in Real-Time Angular-Interrogation Surface Plasmon Resonance Biosensor Based on Anisotropic Van Der Waals Heterojunction.

Biosensors (Basel)

December 2024

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Surface plasmon resonance (SPR) biosensors have experienced rapid development in recent years and have been widely applied in various fields. Angular-interrogation SPR biosensors play an important role in the field of biological detection due to their advantages of reliable results and high stability. However, angular-interrogation SPR biosensors also suffer from low detection sensitivity, poor real-time performance, and limited dynamic detection range, which seriously restricts their application and promotion.

View Article and Find Full Text PDF

A Review Study on Molecularly Imprinting Surface Plasmon Resonance Sensors for Food Analysis.

Biosensors (Basel)

November 2024

Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.

Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.

View Article and Find Full Text PDF

Advances in Surface-Enhanced Raman Spectroscopy for Urinary Metabolite Analysis: Exploiting Noble Metal Nanohybrids.

Biosensors (Basel)

November 2024

Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.

This review examines recent advances in surface-enhanced Raman spectroscopy (SERS) for urinary metabolite analysis, focusing on the development and application of noble metal nanohybrids. We explore the diverse range of hybrid materials, including carbon-based, metal-organic-framework (MOF), silicon-based, semiconductor, and polymer-based systems, which have significantly improved SERS performance for detecting key urinary biomarkers. The principles underlying SERS enhancement in these nanohybrids are discussed, elucidating both electromagnetic and chemical enhancement mechanisms.

View Article and Find Full Text PDF

ZnO-Nafion assisted optical fiber dual-SPR biosensor for simultaneous detection of urea and uric acid concentrations.

Biosens Bioelectron

December 2024

College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China.

A novel dual-parameter optical fiber biosensor based on surface plasmon resonance (SPR) for simultaneous measurement of urea and uric acid concentrations is proposed in this paper. Based on the principle of positive and negative electric combination, ZnO nanoparticles is selected as the matrix for immobilizing urease and uricase with selective recognition ability, which can also be used as a sensitizing material to increase the refractive index detection sensitivity of SPR by 22%. Then, Nafion ion exchange membrane was introduced to wrap the urea sensing area to avoid crosstalk caused by the overlap of adjacent sensing areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!