Revealing amphiphilic nanodomains of anti-biofouling polymer coatings.

ACS Appl Mater Interfaces

Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates 54224.

Published: April 2014

Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be ∼1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am405159fDOI Listing

Publication Analysis

Top Keywords

amphiphilic nanodomains
12
amphiphilic coatings
8
amphiphilic
6
revealing amphiphilic
4
nanodomains anti-biofouling
4
anti-biofouling polymer
4
coatings
4
polymer coatings
4
coatings undesired
4
undesired bacterial
4

Similar Publications

Article Synopsis
  • - The study focuses on the separation of similar-charge ions and explores membranes made from zwitterionic amphiphilic copolymers (ZAC-X) that can selectively allow the passage of different anions, particularly comparing two structural arrangements, Motif A and Motif B.
  • - Molecular dynamics simulations were used to analyze how the orientation of zwitterionic ligands affects the movement and selectivity of anions, revealing that Motif A shows less ion pairing while Motif B demonstrates stronger pairing for small anions.
  • - Results indicate that the size of anions influences their partitioning and diffusivity, with Motif B showing higher selectivity for larger anions; ultimately, partitioning trends have a greater impact on
View Article and Find Full Text PDF

Amphiphilic Polyelectrolyte Complexes for Fouling-Resistant and Easily Tunable Membranes.

ACS Appl Mater Interfaces

July 2024

Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.

Commercial membranes today are manufactured from a handful of membrane materials. While these systems are well-optimized, their capabilities remain constrained by limited chemistries and manufacturing methods available. As a result, membranes cannot address many relevant separations where precise selectivity is needed, especially with complex feeds.

View Article and Find Full Text PDF

Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design.

View Article and Find Full Text PDF

Amphiphilic comb-like random copolymers synthesized from poly(ethylene glycol) methyl ether methacrylate (PEGMMA) and stearyl methacrylate (SMA) with PEGMMA contents ranging between 30 wt% and 25 wt% were demonstrated to self-assemble into various well-defined nanostructures, including spherical micelles, wormlike micelles, and vesicle-like nanodomains, in anhydride-cured epoxy thermosets. In addition, the polymer blends of the comb-like random copolymer and poly(stearyl methacrylate) were prepared and incorporated into epoxy thermosets to form irregularly shaped nanodomains. Our research findings indicate that both the comb-like random copolymers and polymer blends are suitable as toughening modifiers for epoxy.

View Article and Find Full Text PDF

Amphiphilic Polyampholytes for Fouling-Resistant and Easily Tunable Membranes.

ACS Appl Mater Interfaces

September 2023

Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.

The versatility of membranes is limited by the narrow range of material chemistries on the market, which cannot address many relevant separations. Expanding their use requires new membrane materials that can be tuned to address separations by providing the desired selectivity and robustness. Self-assembly is a versatile and scalable approach to create tunable membranes with a narrow pore size distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!