Cryptic epitopes of albumin determine mononuclear phagocyte system clearance of nanomaterials.

ACS Nano

School of Biomedical Sciences and ‡Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, 4072, Australia.

Published: April 2014

While plasma proteins can influence the physicochemical properties of nanoparticles, the adsorption of protein to the surface of nanomaterials can also alter the structure and function of the protein. Here, we show that plasma proteins form a hard corona around synthetic layered silicate nanoparticles (LSN) and that one of the principle proteins is serum albumin. The protein corona was required for recognition of the nanoparticles by scavenger receptors, a major receptor family associated with the mononuclear phagocyte system (MPS). Albumin alone could direct nanoparticle uptake by human macrophages, which involved class A but not class B scavenger receptors. Upon binding to LSN, albumin unfolded to reveal a cryptic epitope that could also be exposed by heat denaturation. This work provides an understanding of how albumin, and possibly other proteins, can promote nanomaterial recognition by the MPS without albumin requiring chemical modification for scavenger receptor recognition. These findings also demonstrate an additional function for albumin in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn405830gDOI Listing

Publication Analysis

Top Keywords

mononuclear phagocyte
8
phagocyte system
8
plasma proteins
8
scavenger receptors
8
mps albumin
8
albumin
7
cryptic epitopes
4
epitopes albumin
4
albumin determine
4
determine mononuclear
4

Similar Publications

The retinal pigment epithelium (RPE) surrounds the posterior eye and maintains the health and function of the photoreceptors. Consequently, RPE dysfunction or damage has a devastating impact on vision. Due to complex etiologies, there are currently no cures for patients with RPE degenerative diseases, which remain some of the most prevalent causes of vision loss worldwide.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly aggressive brain tumor characterized by its ability to evade the immune system, hindering the efficacy of current immunotherapies. Recent research has highlighted the important role of immunosuppressive macrophages in the tumor microenvironment (TME) in driving this immune evasion. In this study, we are the first to identify as a key regulator of tumor-associated macrophage (TAM)-mediated immunosuppression in GBM.

View Article and Find Full Text PDF

Single-cell sequencing revealed the necessity of macrophages in brain microenvironment remodeling by breast cancer metastasis.

Transl Oncol

January 2025

Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China; Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China. Electronic address:

Breast cancer is one of the most common cancers worldwide, 30-50 % of patients with advanced breast cancer develop brain metastasis, causing severe damage to their life quality. Due to the existence of the blood-brain barrier (BBB), brain lesions were recognized to be a unique microenvironment with limited infiltration of circulating immune cells and drugs. However, emerging studies reported the immunology of the brain tumor microenvironment (TME) and indicated the potential of immunotherapy against brain metastases.

View Article and Find Full Text PDF

scRNA-seq reveals elevated interferon responses and TNF-α signaling via NFkB in monocytes in children with uncomplicated malaria.

Exp Biol Med (Maywood)

January 2025

West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.

Malaria causes significant morbidity and mortality worldwide, disproportionately impacting sub-Saharan Africa. Disease phenotypes associated with infection can vary widely, from asymptomatic to life-threatening. To date, prevention efforts, particularly those related to vaccine development, have been hindered by an incomplete understanding of which factors impact host immune responses resulting in these divergent outcomes.

View Article and Find Full Text PDF

Background: Anti-citrullinated peptide antibodies (ACPA)-negative (ACPA-) rheumatoid arthritis (RA) presents significant diagnostic and therapeutic challenges due to the absence of specific biomarkers, underscoring the need to elucidate its distinctive cellular and metabolic profiles for more targeted interventions.

Methods: Single-cell RNA sequencing data from peripheral blood mononuclear cells (PBMCs) and synovial tissues of patients with ACPA- and ACPA+ RA, as well as healthy controls, were analyzed. Immune cell populations were classified based on clustering and marker gene expression, with pseudotime trajectory analysis, weighted gene co-expression network analysis (WGCNA), and transcription factor network inference providing further insights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!